Page 33 - 《精细化工》2020年第3期
P. 33
第 3 期 高懂儒,等: 钒酸镍锂离子电池负极材料的研究进展 ·451·
materials for lithium-ion batteries[J]. Chemical Engineering Journal, Synthesis of Ni 3V 2O 8@ graphene oxide nanocomposite as an
2017, 326: 587-593. efficient electrode material for supercapacitor applications[J]. Journal
[25] NI S B, MA J J, ZHANG J C, et al. Excellent electrochemical of Solid State Electrochemistry, 2018, 22(2): 527-536.
performance of NiV 3O 8/natural graphite anodes via novel in situ [40] LAWES G, HARRIS A B, KIMURA T, et al. Magnetically driven
electrochemical reconstruction[J]. Chemical Communications, 2015, ferroelectric order in Ni 3V 2O 8[J]. Physical Review Letters, 2005,
51(27): 5880- 5882. 95(8): 087205-087209.
[26] LI Y, KONG L B, LIU M C, et al. Facile synthesis of a nickel [41] WANG D F, TANG J W, ZOU Z G, et al. Photophysical and
vanadate/Ni composite and its electrochemical performance as an photocatalytic properties of a new series of visible-light-driven
anode for lithium ion batteries[J]. RSC Advances, 2016, 6(93): photocatalysts M 3V 2O 8 (M=Mg, Ni, Zn)[J]. Chemistry of Materials,
90197-90205. 2005, 17(20): 5177-5182.
[27] LI Y, KONG L B, LIU M C, et al. One-step synthesis of micro/nano [42] WANG C, FANG D, WANG H E, et al. Uniform nickel vanadate
flower-like Ni 3V 2O 8 as anode for Li-ion batteries[J]. Materials (Ni 3V 2O 8) nanowire arrays organized by ultrathin nanosheets with
Letters, 2017, 186: 289-292. enhanced lithium storage properties[J]. Scientific Reports, 2016, 6:
[28] LI Yang( 李扬 ). Nickel-based and cobalt-based metal oxides 20826- 20834.
nanocomposites: fabrication and their lithium storage properties[D]. [43] SOUNDHARRAJAN V, SAMBANDAM B, SONG J, et al. Bitter
Lanzhou: Lanzhou University of Technology (兰州理工大学), 2017. gourd-shaped Ni 3V 2O 8 anode developed by a one-pot metal-organic
[29] KUMAR R, RAI P, SHARMA A. 3D urchin-shaped Ni 3(VO 4) 2 framework-combustion technique for advanced Li-ion batteries[J].
hollow nanospheres for high-performance asymmetric supercapacitor Ceramics International, 2017, 43(16): 13224-13232.
applications[J]. Journal of Materials Chemistry A, 2016, 4(25): [44] KIM M G, CHO J. Reversible and high-capacity nanostructured
9822-9831. electrode materials for Li-ion batteries[J]. Advanced Functional
[30] NAZAR L F, KOENE B E, BRITTEN J F. Hydrothermal synthesis Materials, 2009, 19(10): 1497-1514.
and crystal structure of a novel layered vanadate with 1,4-Diazabicyclo [45] HU Y S, LIU X, MÜLLER J O, et al. Synthesis and electrode
[2.2.2] octane as the structure-directing agent: (C 6H 14N 2)V 6O 14•H 2O performance of nanostructured V 2O 5 by using a carbon tube-in-tube
[J]. Chemistry of materials, 1996, 8(2): 327-329. as a nanoreactor and an efficient mixed-conducting network[J].
[31] ROGADO N, LAWES G, HUSE D A, et al. The Kagomé-staircase Angewandte Chemie International Edition, 2009, 48(1): 210-214.
lattice: magnetic ordering in Ni 3V 2O 8 and Co 3V 2O 8[J]. Solid State [46] WANG Y, TAKAHASHI K, LEE K H, et al. Nanostructured
Communications, 2002, 124(7): 229-233. vanadium oxide electrodes for enhanced lithium-ion intercalation[J].
[32] CUI P, LIANG Y, ZHAN D, et al. Synthesis and characterization of Advanced Functional Materials, 2006, 16(9): 1133-1144.
NiV 3O 8 powder as cathode material for lithium-ion batteries[J]. [47] FANG X P, GUO B K, SHI Y F, et al. Enhanced Li storage
Electrochimica Acta, 2014, 148: 261-265. performance of ordered mesoporous MoO 2 via tungsten doping[J].
[33] ROZIER P, COMBES M, GALY J. NiV 3O 8 single crystal structure Nanoscale, 2012, 4(5): 1541-1544.
determination and comparison with polymorphic forms of ZnV 3O 8 [48] SINGHAL A, SKANDAN G, AMATUCCI G, et al. Nanostructured
and MgV 3O 8[J]. Journal of Physics and Chemistry of Solids, 2001, electrodes for next generation rechargeable electrochemical
62(8): 1401-1408. devices[J]. Journal of Power Sources, 2004, 129(1): 38-44.
[34] SAMBANDAM B, SOUNDHARRAJAN V, SONG J, et al. Ni 3V 2O 8 [49] WANG G X, SHEN X P, YAO J, et al. Graphene nanosheets for
nanoparticles as an excellent anode material for high-energy enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009,
lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 47(8): 2049-2053.
810: 34-40. [50] RUI X H, ZHAO X X, LU Z Y, et al. Olivine-type nanosheets for
[35] XU Aiju (徐爱菊), JIA Meilin (贾美林), LIN Qin (林勤). Catalytic lithium ion battery cathodes[J]. ACS Nano, 2013, 7(6): 5637-5646.
performance and X-ray photoelectron spectroscopy analysis of [51] LIU S H, JIA H P, HAN L, et al. Nanosheet-constructed porous
Ni 3V 2O 8[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分 TiO 2-B for advanced lithium ion batteries[J]. Advanced Materials,
析), 2007, 27(10): 2134-2138. 2012, 24(24): 3201-3204.
[36] LIU F M, SUN R Z, GUAN Y H, et al. Mixed-potential type NH 3 [52] LU S Y, ZHU T X, LI Z Y, et al. Ordered mesoporous carbon
sensor based on stabilized zirconia and Ni 3V 2O 8 sensing electrode[J]. supported Ni 3V 2O 8 composites for lithium-ion batteries with long-
Sensors and Actuators B: Chemical, 2015, 210: 795-802. term and high-rate performance[J]. Journal of Materials Chemistry A,
[37] LOW W H, KHIEW P S, LIM S S, et al. Facile solvothermal 2018, 6(16): 7005-7013.
designing of graphene/Ni 3V 2O 8 nanocomposite as electrode for high [53] YANG M Y, FU X L, ZHANG J Q, et al. Hierarchical ultrafine
performance symmetric supercapacitor[J]. Journal of Alloys and Ni 3V 2O 8 nanoparticles anchored on rGO as high-performance anode
Compounds, 2018, 768: 995-1005. materials for lithium-ion batteries[J]. Energy Technology, 2019, 7(8):
[38] LIU M C, KONG L B, KANG L, et al. Synthesis and 1800784.
characterization of M 3V 2O 8 (M=Ni or Co) based nanostructures: A [54] LV C D, SUN J X, CHEN G, et al. Achieving Ni 3V 2O 8 amorphous
new family of high performance pseudocapacitive materials[J]. wire encapsulated in crystalline tube nanostructure as anode
Journal of Materials Chemistry A, 2014, 2(14): 4919-4926. materials for lithium ion batteries[J]. Nano Energy, 2017, 33:
[39] THIAGARAJAN K, THEERTHAGIRI J, SENTHIL R A, et al. 138-145.