Page 33 - 《精细化工》2020年第3期
P. 33

第 3 期                       高懂儒,等:  钒酸镍锂离子电池负极材料的研究进展                                    ·451·


                 materials for lithium-ion batteries[J]. Chemical Engineering Journal,   Synthesis  of  Ni 3V 2O 8@  graphene  oxide  nanocomposite  as  an
                 2017, 326: 587-593.                               efficient electrode material for supercapacitor applications[J]. Journal
            [25]  NI  S  B,  MA  J  J,  ZHANG  J  C,  et al.  Excellent  electrochemical   of Solid State Electrochemistry, 2018, 22(2): 527-536.
                 performance  of  NiV 3O 8/natural  graphite  anodes  via  novel  in situ   [40]  LAWES  G,  HARRIS  A  B,  KIMURA  T,  et al.  Magnetically  driven
                 electrochemical reconstruction[J]. Chemical Communications, 2015,   ferroelectric  order  in  Ni 3V 2O 8[J].  Physical  Review  Letters,  2005,
                 51(27): 5880- 5882.                               95(8): 087205-087209.
            [26]  LI  Y, KONG  L  B, LIU M C,  et al.  Facile  synthesis  of  a  nickel   [41]  WANG  D  F,  TANG  J  W,  ZOU  Z  G,  et al.  Photophysical  and
                 vanadate/Ni  composite  and  its  electrochemical  performance  as  an   photocatalytic  properties  of  a  new  series  of  visible-light-driven
                 anode  for  lithium  ion  batteries[J].  RSC  Advances,  2016,  6(93):   photocatalysts M 3V 2O 8 (M=Mg, Ni, Zn)[J]. Chemistry of Materials,
                 90197-90205.                                      2005, 17(20): 5177-5182.
            [27]  LI Y, KONG L B, LIU M C, et al. One-step synthesis of micro/nano   [42]  WANG  C,  FANG  D,  WANG  H  E,  et al.  Uniform  nickel  vanadate
                 flower-like  Ni 3V 2O 8  as  anode  for  Li-ion  batteries[J].  Materials   (Ni 3V 2O 8)  nanowire  arrays  organized  by  ultrathin  nanosheets  with
                 Letters, 2017, 186: 289-292.                      enhanced  lithium  storage  properties[J].  Scientific  Reports,  2016,  6:
            [28]  LI  Yang( 李扬 ).  Nickel-based  and  cobalt-based  metal  oxides   20826- 20834.
                 nanocomposites: fabrication and their lithium storage properties[D].   [43]  SOUNDHARRAJAN  V,  SAMBANDAM  B,  SONG  J,  et al.  Bitter
                 Lanzhou: Lanzhou University of Technology (兰州理工大学), 2017.   gourd-shaped Ni 3V 2O 8 anode developed by a one-pot metal-organic
            [29]  KUMAR  R,  RAI  P,  SHARMA  A.  3D  urchin-shaped  Ni 3(VO 4) 2   framework-combustion  technique  for  advanced  Li-ion  batteries[J].
                 hollow nanospheres for high-performance asymmetric supercapacitor   Ceramics International, 2017, 43(16): 13224-13232.
                 applications[J].  Journal  of  Materials  Chemistry  A,  2016,  4(25):   [44]  KIM  M  G,  CHO  J.  Reversible  and  high-capacity  nanostructured
                 9822-9831.                                        electrode  materials  for  Li-ion  batteries[J].  Advanced  Functional
            [30]  NAZAR L F, KOENE B E, BRITTEN J F. Hydrothermal synthesis   Materials, 2009, 19(10): 1497-1514.
                 and crystal structure of a novel layered vanadate with 1,4-Diazabicyclo   [45]  HU  Y  S, LIU X,  MÜLLER  J  O,  et al.  Synthesis  and  electrode
                 [2.2.2] octane as the structure-directing agent: (C 6H 14N 2)V 6O 14•H 2O   performance of nanostructured V 2O 5 by using a carbon tube-in-tube
                 [J]. Chemistry of materials, 1996, 8(2): 327-329.   as  a  nanoreactor  and  an  efficient  mixed-conducting  network[J].
            [31]  ROGADO N, LAWES G, HUSE D A, et al. The Kagomé-staircase   Angewandte Chemie International Edition, 2009, 48(1): 210-214.
                 lattice:  magnetic  ordering  in  Ni 3V 2O 8  and  Co 3V 2O 8[J].  Solid  State   [46]  WANG  Y,  TAKAHASHI  K,  LEE  K  H,  et al.  Nanostructured
                 Communications, 2002, 124(7): 229-233.            vanadium oxide electrodes for enhanced lithium-ion intercalation[J].
            [32]  CUI P, LIANG Y, ZHAN D, et al. Synthesis and characterization of   Advanced Functional Materials, 2006, 16(9): 1133-1144.
                 NiV 3O 8  powder  as  cathode  material  for  lithium-ion  batteries[J].   [47]  FANG  X  P,  GUO  B  K,  SHI  Y  F,  et al.  Enhanced  Li  storage
                 Electrochimica Acta, 2014, 148: 261-265.          performance  of  ordered  mesoporous  MoO 2  via  tungsten  doping[J].
            [33]  ROZIER P, COMBES M, GALY J. NiV 3O 8 single crystal structure   Nanoscale, 2012, 4(5): 1541-1544.
                 determination  and  comparison  with  polymorphic  forms  of  ZnV 3O 8   [48]  SINGHAL A, SKANDAN G, AMATUCCI G, et al. Nanostructured
                 and MgV 3O 8[J]. Journal of Physics and Chemistry of Solids, 2001,   electrodes  for  next  generation  rechargeable  electrochemical
                 62(8): 1401-1408.                                 devices[J]. Journal of Power Sources, 2004, 129(1): 38-44.
            [34]  SAMBANDAM B, SOUNDHARRAJAN V, SONG J, et al. Ni 3V 2O 8   [49]  WANG  G  X,  SHEN  X  P,  YAO  J,  et al.  Graphene  nanosheets  for
                 nanoparticles  as  an  excellent  anode  material  for  high-energy   enhanced  lithium  storage  in  lithium  ion  batteries[J].  Carbon,  2009,
                 lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2018,   47(8): 2049-2053.
                 810: 34-40.                                   [50]  RUI X H, ZHAO X X, LU Z Y, et al. Olivine-type nanosheets for
            [35]  XU Aiju (徐爱菊), JIA Meilin (贾美林), LIN Qin (林勤). Catalytic   lithium ion battery cathodes[J]. ACS Nano, 2013, 7(6): 5637-5646.
                 performance  and  X-ray  photoelectron  spectroscopy  analysis  of   [51]  LIU S H,  JIA  H  P, HAN  L,  et al.  Nanosheet-constructed  porous
                 Ni 3V 2O 8[J].  Spectroscopy  and  Spectral  Analysis  (光谱学与光谱分  TiO 2-B  for  advanced  lithium  ion  batteries[J].  Advanced  Materials,
                 析), 2007, 27(10): 2134-2138.                      2012, 24(24): 3201-3204.
            [36]  LIU F M, SUN R Z, GUAN Y H, et al. Mixed-potential type NH 3   [52]  LU  S  Y,  ZHU T  X,  LI Z Y,  et al.  Ordered  mesoporous  carbon
                 sensor based on stabilized zirconia and Ni 3V 2O 8 sensing electrode[J].   supported  Ni 3V 2O 8  composites  for  lithium-ion  batteries  with  long-
                 Sensors and Actuators B: Chemical, 2015, 210: 795-802.   term and high-rate performance[J]. Journal of Materials Chemistry A,
            [37]  LOW W H,  KHIEW P S,  LIM  S  S,  et al.  Facile  solvothermal   2018, 6(16): 7005-7013.
                 designing of graphene/Ni 3V 2O 8 nanocomposite as electrode for high   [53]  YANG M Y,  FU  X L,  ZHANG  J  Q,  et al.  Hierarchical  ultrafine
                 performance  symmetric  supercapacitor[J].  Journal  of  Alloys  and   Ni 3V 2O 8 nanoparticles anchored on rGO as high-performance anode
                 Compounds, 2018, 768: 995-1005.                   materials for lithium-ion batteries[J]. Energy Technology, 2019, 7(8):
            [38]  LIU  M  C,  KONG  L  B,  KANG  L,  et al.  Synthesis  and   1800784.
                 characterization  of  M 3V 2O 8  (M=Ni  or Co) based nanostructures: A   [54]  LV C D, SUN J X, CHEN G, et al. Achieving Ni 3V 2O 8 amorphous
                 new  family  of  high  performance  pseudocapacitive  materials[J].   wire  encapsulated  in  crystalline  tube  nanostructure  as  anode
                 Journal of Materials Chemistry A, 2014, 2(14): 4919-4926.   materials  for  lithium  ion  batteries[J].  Nano  Energy,  2017,  33:
            [39]  THIAGARAJAN  K,  THEERTHAGIRI  J,  SENTHIL  R  A,  et al.   138-145.
   28   29   30   31   32   33   34   35   36   37   38