Page 52 - 《精细化工》2020年第3期
P. 52

·470·                             精细化工   FINE CHEMICALS                                  第 37 卷

            用领域,多功能水性粘结剂呈现出越来越广泛的应                             [11]  LACEY  M  J,  JESCHULL  F,  EDSTRÖM  K,  et al.  Functional,
                                                                   water-soluble  binders  for  improved  capacity  and  stability  of
            用前景。尽管如此,仍需在以下方面进行系统的研
                                                                   lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 264: 8-14.
            究工作:                                               [12]  HONG  Y,  HUANG  J  Q,  PENG  H  J,  et al.  A  review  of  functional
                (1)分子结构设计的多样化研究。在多功能水                              binders  in  lithium-sulfur  batteries[J].  Advanced  Energy  Materials,
                                                                   2018, 8(31): 180207-180226.
            性粘结剂的结构基础上,结合抑制多硫化物穿梭的
                                                               [13]  MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the
            技术手段,进一步结合包括形成吸附层、静电和空                                 Li/S battery system[J]. Journal of the Electrochemical Society, 2004,
            间位阻效应等作用,实现更高效的多硫化物阻隔作                                 151: A1969-A1976.
                                                               [14]  LIAO H, ZHANG H, HONG H, et al. Novel flower-like hierarchical
            用;多维度粘结粉体,通过对多硫化物的吸附和电                                 carbon  sphere  with  multi-scale  pores  coated  on  PP  separator  for
            化学催化转化有效实现含硫组分的回收,避免惰性                                 high-performance  lithium-sulfur  batteries[J].  Electrochimica  Acta,
                                                                   2017, 257: 210-216.
            沉淀的生成和粉体材料脱落,提高活性材料的利用
                                                               [15]  ZHANG  L,  LING  M,  FENG  J,  et al.  Effective  electrostatic
            率。以粘结剂的视角着手改善锂硫电池现存的科学                                 confinement of polysulfides in lithium/sulfur batteries by a functional
            和技术问题,拓宽多功能水性粘结剂的应用领域,                                 binder[J]. Nano Energy, 2017, 40: 559-565.
                                                               [16]  SHI L, ZENG F, CHENG X, et al. Enhanced performance of lithium-
            并为其他多电子转化电化学储能体系如锂空电池、                                 sulfur batteries with high sulfur loading utilizing ion selective MWCNT/
            锌空电池等提供理论依据和技术支持。                                      SPANI  modified  separator[J].  Chemical  Engineering  Journal,  2018,
                (2)粘结剂与锂硫电池其他重要组成部分协同                              334: 305-312.
                                                               [17]  MAO Y, LI G, GUO Y, et al. Foldable interpenetrated metal-organic
            作用研究。现有粘结剂的研究集中在分子结构设计                                 frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J].
            方面,而锂硫电池中多硫化物氧化还原是一个复杂                                 Nature Communications, 2017, 8: 14628-14635.
                                                               [18]  MA  L,  HOU  L  L,  ZHUANG  W  S, et al.  Enhanced  Li-S  batteries
            的多相转变过程,电池电化学性能优化需要硫阴极                                 using amine-functionalized carbon nanotubes in the cathode[J]. ACS
            和稳定的锂金属阳极方面共同努力,因此在未来的                                 Nano, 2016, 10(1): 1050-1059.
            研究中,利用人工智能寻求高性能粘结剂的同时更                             [19]  PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur
                                                                   batteries based on multifunctional cathodes and electrolytes[J]. Nature
            要注重其与硫电极和金属阳极作用机制及构效关系                                 Energy, 2016, 1: 16132-16143.
            方面的研究。                                             [20]  WANG  S,  QIAN  X,  JIN  L,  et al.  Separator  modified  by  Y 2O 3
                                                                   nanoparticles-ketjen black hybrid and its application in lithium-sulfur
            参考文献:                                                  battery[J].  Journal  of  Solid  State  Electrochemistry,  2017,  21:
                                                                   3229-3236.
            [1]   KOVALENKO  I,  ZDYRKO  B,  MAGASINSKI  A,  et al.  A  major   [21]  GHAZI Z A, HE X, KHATTAK A M, et al. MoS 2 /celgard separator
                 constituent  of  brown  algae  for  use  in  high-capacity  Li-ion   as  efficient  polysulfide  barrier  for  long-life  lithium-sulfur
                 batteries[J]. Science, 2011, 334: 75-79.          batteries[J]. Advanced Materials, 2017, 29(21): 1606817.
            [2]   XU  G,  DING  B,  PAN  J,  et al.  High  performance  lithium-sulfur   [22]  ZHU J, GE Y, KIM D, et al. A novel separator coated by carbon for
                 batteries: Advances and challenges[J]. Journal of Materials Chemistry   achieving  exceptional  high  performance  lithium-sulfur  batteries[J].
                 A, 2014, 2(32): 12662-12676.                      Nano Energy, 2016, 20: 176-184.
            [3]   MANTHIRAM  A,  FU  Y,  SU  Y  S.  Challenges  and  prospects  of   [23]  VIZINTIN  A,  GUTERMAN  R,  SCHMIDT  J,  et al.  Linear  and
                 lithium  sulfur  batteries[J].  Accounts  of  Chemical  Research,  2013,   cross-linked  ionic  liquid  polymers  as  binders  in  lithium-sulfur
                 46(5): 1125-1134.                                 batteries[J]. Chemistry of Materials, 2018, 30: 5444-5450.
            [4]   LI G,  SUN  J, HOU W,  et al.  Three-dimensional  porous  carbon   [24]  LIAO  J,  LIU  Z,  LIU  X,  et al.  Water-soluble  linear
                 composites  containing  high  sulfur  nanoparticle  content  for  high-   poly(ethylenimine) as a superior bifunctional binder for lithium-sulfur
                 performance lithium-sulfur batteries[J]. Nature Communications, 2016,   batteries  of  improved  cell  performance[J].  The  Journal  of  Physical
                 7: 10601-10610.                                   Chemistry C, 2018, 122(45): 25917-25929.
            [5]   FAN  C  Y,  YUAN  H  Y,  LI  H  H,  et al.  The  effective  design  of  a   [25]  LING  M,  YAN  W,  KAWASE  A,  et al.  Electrostatic  polysulfides
                 polysulfide-trapped separator at the molecular level for high energy   confinement  to  inhibit  redox  shuttle  process  in  the  lithium  sulfur
                 density Li-S batteries[J]. ACS Applied Materials & Interfaces, 2016,   batteries[J].  ACS  Applied  Materials  &  Interfaces,  2017,  9(37):
                 8(25): 16108-16115.                               31741-31745.
            [6]   HE  G,  HART  C  J,  LIANG  X,  et al.  Stable cycling  of a scalable   [26]  LIAO J, YE Z. Quaternary ammonium cationic polymer as a superior
                 graphene-encapsulated  nanocomposite  for  lithium-sulfur  batteries[J].   bifunctional binder for lithium-sulfur batteries and effects of counter
                 ACS Applied Materials & Interfaces, 2014, 6(14): 10917-10923.   anion[J]. Electrochimica Acta, 2018, 259: 626-636.
            [7]   ZHANG  S  S.  Binder  based  on  polyelectrolyte  for  high  capacity   [27]  YU X, ZHOU G, CUI Y. Mitigation of shuttle effect in Li-S battery
                 density  lithium/sulfur  battery[J].  Journal  of  the  Electrochemical   using a self-assembled ultrathin molybdenum disulfide interlayer[J].
                 Society, 2012, 159: A1226-A1229.                  ACS Applied Materials & Interfaces, 2019, 11(3): 3080-3086.
            [8]   WANG  L,  DONG  Z,  WANG  D,  et al.  Covalent  bond  glued  sulfur   [28]  GOPE S, BHATTACHARYYA A J. Using a metal oxide nanoparticle
                 nanosheet-based  cathode  integration  for  long  cycle-life  Li-S   interlayer  to  efficiently  anchor  polysulfides  at  high  mass  loading
                 batteries[J]. Nano Letter, 2013, 13(12): 6244-6250.   S-cathodes  in  Li-S  rechargeable  battery[J].  ACS  Applied  Energy
            [9]   CHEON  S  E,  CHOI  S  S,  HAN  J  S,  et al.  Capacity  fading   Materials, 2018, 1(6): 2942-2954.
                 mechanisms on cycling a high-capacity secondary sulfur cathode[J].   [29]  DENG  D  R, BAI C D,  XUE  F,  et al.  Multifunctional  ion-sieve
                 Journal of The Electrochemical of Society, 2004, 151: A2067-A2073.   constructed  by  2D  materials  as  an  interlayer  for  Li-S  batteries[J].
            [10]  CHAI Lili (柴丽莉), ZHANG Li (张力), QU Qunting (曲群婷), et   ACS Applied Materials & Interfaces, 2019, 11(12): 11474-11480.
                 al. Research progress of electrode binder for lithium ion battery[J].   [30]  MATTHEW J L, VIKING S, ANDREAS B, et al. A robust, water-based,
                 Chemistry Bulletin (化学通报), 2013, 76: 299-306.     functional  binder  framework  for  high-energy  lithium-sulfur
   47   48   49   50   51   52   53   54   55   56   57