Page 52 - 《精细化工》2020年第3期
P. 52
·470· 精细化工 FINE CHEMICALS 第 37 卷
用领域,多功能水性粘结剂呈现出越来越广泛的应 [11] LACEY M J, JESCHULL F, EDSTRÖM K, et al. Functional,
water-soluble binders for improved capacity and stability of
用前景。尽管如此,仍需在以下方面进行系统的研
lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 264: 8-14.
究工作: [12] HONG Y, HUANG J Q, PENG H J, et al. A review of functional
(1)分子结构设计的多样化研究。在多功能水 binders in lithium-sulfur batteries[J]. Advanced Energy Materials,
2018, 8(31): 180207-180226.
性粘结剂的结构基础上,结合抑制多硫化物穿梭的
[13] MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the
技术手段,进一步结合包括形成吸附层、静电和空 Li/S battery system[J]. Journal of the Electrochemical Society, 2004,
间位阻效应等作用,实现更高效的多硫化物阻隔作 151: A1969-A1976.
[14] LIAO H, ZHANG H, HONG H, et al. Novel flower-like hierarchical
用;多维度粘结粉体,通过对多硫化物的吸附和电 carbon sphere with multi-scale pores coated on PP separator for
化学催化转化有效实现含硫组分的回收,避免惰性 high-performance lithium-sulfur batteries[J]. Electrochimica Acta,
2017, 257: 210-216.
沉淀的生成和粉体材料脱落,提高活性材料的利用
[15] ZHANG L, LING M, FENG J, et al. Effective electrostatic
率。以粘结剂的视角着手改善锂硫电池现存的科学 confinement of polysulfides in lithium/sulfur batteries by a functional
和技术问题,拓宽多功能水性粘结剂的应用领域, binder[J]. Nano Energy, 2017, 40: 559-565.
[16] SHI L, ZENG F, CHENG X, et al. Enhanced performance of lithium-
并为其他多电子转化电化学储能体系如锂空电池、 sulfur batteries with high sulfur loading utilizing ion selective MWCNT/
锌空电池等提供理论依据和技术支持。 SPANI modified separator[J]. Chemical Engineering Journal, 2018,
(2)粘结剂与锂硫电池其他重要组成部分协同 334: 305-312.
[17] MAO Y, LI G, GUO Y, et al. Foldable interpenetrated metal-organic
作用研究。现有粘结剂的研究集中在分子结构设计 frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J].
方面,而锂硫电池中多硫化物氧化还原是一个复杂 Nature Communications, 2017, 8: 14628-14635.
[18] MA L, HOU L L, ZHUANG W S, et al. Enhanced Li-S batteries
的多相转变过程,电池电化学性能优化需要硫阴极 using amine-functionalized carbon nanotubes in the cathode[J]. ACS
和稳定的锂金属阳极方面共同努力,因此在未来的 Nano, 2016, 10(1): 1050-1059.
研究中,利用人工智能寻求高性能粘结剂的同时更 [19] PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur
batteries based on multifunctional cathodes and electrolytes[J]. Nature
要注重其与硫电极和金属阳极作用机制及构效关系 Energy, 2016, 1: 16132-16143.
方面的研究。 [20] WANG S, QIAN X, JIN L, et al. Separator modified by Y 2O 3
nanoparticles-ketjen black hybrid and its application in lithium-sulfur
参考文献: battery[J]. Journal of Solid State Electrochemistry, 2017, 21:
3229-3236.
[1] KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major [21] GHAZI Z A, HE X, KHATTAK A M, et al. MoS 2 /celgard separator
constituent of brown algae for use in high-capacity Li-ion as efficient polysulfide barrier for long-life lithium-sulfur
batteries[J]. Science, 2011, 334: 75-79. batteries[J]. Advanced Materials, 2017, 29(21): 1606817.
[2] XU G, DING B, PAN J, et al. High performance lithium-sulfur [22] ZHU J, GE Y, KIM D, et al. A novel separator coated by carbon for
batteries: Advances and challenges[J]. Journal of Materials Chemistry achieving exceptional high performance lithium-sulfur batteries[J].
A, 2014, 2(32): 12662-12676. Nano Energy, 2016, 20: 176-184.
[3] MANTHIRAM A, FU Y, SU Y S. Challenges and prospects of [23] VIZINTIN A, GUTERMAN R, SCHMIDT J, et al. Linear and
lithium sulfur batteries[J]. Accounts of Chemical Research, 2013, cross-linked ionic liquid polymers as binders in lithium-sulfur
46(5): 1125-1134. batteries[J]. Chemistry of Materials, 2018, 30: 5444-5450.
[4] LI G, SUN J, HOU W, et al. Three-dimensional porous carbon [24] LIAO J, LIU Z, LIU X, et al. Water-soluble linear
composites containing high sulfur nanoparticle content for high- poly(ethylenimine) as a superior bifunctional binder for lithium-sulfur
performance lithium-sulfur batteries[J]. Nature Communications, 2016, batteries of improved cell performance[J]. The Journal of Physical
7: 10601-10610. Chemistry C, 2018, 122(45): 25917-25929.
[5] FAN C Y, YUAN H Y, LI H H, et al. The effective design of a [25] LING M, YAN W, KAWASE A, et al. Electrostatic polysulfides
polysulfide-trapped separator at the molecular level for high energy confinement to inhibit redox shuttle process in the lithium sulfur
density Li-S batteries[J]. ACS Applied Materials & Interfaces, 2016, batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37):
8(25): 16108-16115. 31741-31745.
[6] HE G, HART C J, LIANG X, et al. Stable cycling of a scalable [26] LIAO J, YE Z. Quaternary ammonium cationic polymer as a superior
graphene-encapsulated nanocomposite for lithium-sulfur batteries[J]. bifunctional binder for lithium-sulfur batteries and effects of counter
ACS Applied Materials & Interfaces, 2014, 6(14): 10917-10923. anion[J]. Electrochimica Acta, 2018, 259: 626-636.
[7] ZHANG S S. Binder based on polyelectrolyte for high capacity [27] YU X, ZHOU G, CUI Y. Mitigation of shuttle effect in Li-S battery
density lithium/sulfur battery[J]. Journal of the Electrochemical using a self-assembled ultrathin molybdenum disulfide interlayer[J].
Society, 2012, 159: A1226-A1229. ACS Applied Materials & Interfaces, 2019, 11(3): 3080-3086.
[8] WANG L, DONG Z, WANG D, et al. Covalent bond glued sulfur [28] GOPE S, BHATTACHARYYA A J. Using a metal oxide nanoparticle
nanosheet-based cathode integration for long cycle-life Li-S interlayer to efficiently anchor polysulfides at high mass loading
batteries[J]. Nano Letter, 2013, 13(12): 6244-6250. S-cathodes in Li-S rechargeable battery[J]. ACS Applied Energy
[9] CHEON S E, CHOI S S, HAN J S, et al. Capacity fading Materials, 2018, 1(6): 2942-2954.
mechanisms on cycling a high-capacity secondary sulfur cathode[J]. [29] DENG D R, BAI C D, XUE F, et al. Multifunctional ion-sieve
Journal of The Electrochemical of Society, 2004, 151: A2067-A2073. constructed by 2D materials as an interlayer for Li-S batteries[J].
[10] CHAI Lili (柴丽莉), ZHANG Li (张力), QU Qunting (曲群婷), et ACS Applied Materials & Interfaces, 2019, 11(12): 11474-11480.
al. Research progress of electrode binder for lithium ion battery[J]. [30] MATTHEW J L, VIKING S, ANDREAS B, et al. A robust, water-based,
Chemistry Bulletin (化学通报), 2013, 76: 299-306. functional binder framework for high-energy lithium-sulfur