Page 53 - 《精细化工》2020年第3期
P. 53

第 3 期                         邹树良,等:  锂硫电池功能化粘结剂的研究进展                                    ·471·


                 batteries[J]. Chem Sus Chem, 2017, 10(13): 2758-2766.   toward  stable  lithium-sulfur  batteries  with  high  volumetric  energy
            [31]  SEH Z W, ZHANG Q, LI W, et al. Stable cycling of lithium sulfide   density[J]. Advanced Energy Materials, 2017, 7(6): 1601630-1601638.
                 cathodes through strong affinity with a bifunctional binder[J]. Chemical   [49]  XU  G,  YAN  Q  B,  KUSHIM  A,  et al.  Conductive  graphene  oxide-
                 Science, 2013, 4(9): 3673-3677.                   polyacrylic acid (GOPAA) binder for lithium-sulfur battery[J]. Nano
            [32]  JI  X,  LEE  K  T,  NAZAR  L  F.  A  highly  ordered  nanostructured   Energy, 2017, 31: 568-574.
                 carbon-sulphur  cathode  for  lithium-sulphur  batteries[J].  Nature   [50]  WU M, XIAO X, VUKMIROVIC N, et al. Toward an ideal polymer
                 Materials, 2009, 8: 500-506.                      binder  design  for  high-capacity  battery  anodes[J].  Journal  of  the
            [33]  GUY  D,  LESTRIEZ  B,  GUYOMARD  D.  New  composite  electrode   American Chemical Society, 2013, 135(32): 12048-12056.
                 architecture and improved battery performance from the smart use of   [51]  LIU  D,  LI  Y,  YUAN  J,  et al.  Improved  performance  of  inverted
                 polymers  and  their  properties[J].  Advanced  Materials,  2004,  16(6):   planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole
                 553-557.                                          transport  layers[J].  Journal  of  Materials  Chemistry  A,  2017,  5(12):
            [34]  WANG J, YAO Z, MONROE C W, et al. Carbonyl-β-cyclodextrin as   5701-5708.
                 a novel binder for sulfur composite cathodes in rechargeable lithium   [52]  YUAN H, LIU J, LI H, et al. Graphitic carbon nitride quantum dot
                 batteries[J]. Advanced Functional Materials, 2013, 23: 1194-1201.   decorated  three-dimensional  graphene  as  an  efficient  metal-free
            [35]  BHATTACHARYA  P,  NANDASIRI  M  I,  LV  D,  et al.   electrocatalyst for triiodide reduction[J]. Journal of Materials Chemistry
                 Polyamidoamine   dendrimer-based   binders   for   high-loading   A, 2018, 6(14): 5603-5607.
                 lithium-sulfur battery cathodes[J]. Nano Energy, 2016, 19: 176-186.   [53]  MILROY C, MANTHIRAM A. An elastic, conductive, electroactive
            [36]  WEI  S,  MA  L,  HENDRICKSON  K  E,  et al.  Metal-sulfur  battery   nanocomposite  binder  for  flexible  sulfur  cathodes  in  lithium-sulfur
                 cathodes based on PAN-sulfur composites[J]. Journal of the American   batteries[J]. Advanced Materials ,2016, 28(44): 9744-9751.
                 Chemical Society, 2015, 137(37): 12143-12152.   [54]  LI G C, LI G R, YE S H, et al. A polyaniline-coated sulfur/carbon
            [37]  AI G, DAI Y, YE Y, et al. Investigation of surface effects through the   composite  with  an  enhanced  high-rate  capability  as  a  cathode
                 application  of  the  functional  binders  in  lithium  sulfur  batteries[J].   material for lithium/sulfur batteries[J]. Advanced Energy Materials,
                 Nano Energy, 2015, 16:28-37.                      2012, 2(10): 1238-1245.
            [38]  LI  G,  LING  M,  YE  Y,  et al.  Acacia  senegal-inspired  bifunctional   [55]  GAO  H,  LU  Q,  YAO  Y,  et al.  Significantly  raising  the  cell
                 binder for longevity of lithium-sulfur batteries[J]. Advanced Energy   performance  of  lithium  sulfur  battery  via  the  multifunctional
                 Materials, 2015, 5(21): 1500878-1500888.          polyaniline binder[J]. Electrochimica Acta, 2017, 232: 414-421.
            [39]  CHEN W, QIAN T, XIONG J, et al. A new type of multifunctional   [56]  LI  W,  ZHANG  Q,  ZHENG  G,  et al.  Understanding  the  role  of
                 polar  binder:  Toward  practical  application  of  high  energy  lithium   different conductive polymers in improving the nanostructured sulfur
                 sulfur   batteries[J].   Advanced   Materials,   2017,   29(12):   cathode performance[J]. Nano Letter, 2013, 13(11): 5534-5540.
                 1605160-1605166.                              [57]  WANG  Z,  CHEN  Y,  BATTAGLIA  V,  et al.  Improving  the
            [40]  YUAN  Z,  PENG  H  J,  HOU  T  Z,  et al.  Powering  lithium-sulfur   performance of lithium-sulfur batteries using conductive polymer and
                 battery  performance  by  propelling  polysulfide  redox  at  sulfiphilic   micrometric sulfur powder[J]. Journal of Materials Research, 2014,
                 hosts[J]. Nano Letter, 2016, 16(1): 519-527.      29: 1027- 1033.
            [41]  HWA  Y,  FRISCHMANN  P  D,  HELMS  B  A,  et al.   [58]  LIU  J,  LI R,  CHEN T,  et al.  Synergistic  effect  between  poly(3,4-
                 Aqueous-processable  redox-active  supramolecular  polymer  binders   ethylenediox-ythiophene)-poly(styrene  sulfonate)  coated  sulfur  nano-
                 for  advanced  lithium/sulfur  cells[J].  Chemistry  of  Materials,  2018,   composites and poly(vinylidene difluoride) on lithium-sulfur battery[J].
                 30(3): 685-691.                                   Journal of the Electrochemical Society, 2018, 165: A557-A564.
            [42]  LIN  H,  YANG  L,  JIANG  X,  et al.  Electrocatalysis  of  polysulfide   [59]  PAN J, XU G, DING B, et al. PAA/PEDOT:PSS as a multifunctional,
                 conversion  by  sulfur-deficient  MoS 2  nanoflakes  for  lithium-sulfur   water-soluble binder to improve the capacity and stability of lithium-
                 batteries[J].  Energy  &  Environmental  Science,  2017,  10(6):  1476-   sulfur batteries[J]. RSC Advances, 2016, 47(6): 40650-40655.
                 1486.                                         [60]  LIU  G,  XUN  S,  VUKMIROVIC  N,  et al.  Polymers  with  tailored
            [43]  CHEN H, WANG C, DAI Y, et al. In-situ activated polycation as a   electronic  structure  for  high  capacity  lithium  battery  electrodes[J].
                 multifunctional additive for Li-S batteries[J]. Nano Energy, 2016, 26:   Advanced Materials, 2011, 23(40): 4679-4683.
                 43-49.                                        [61]  AI G, DAI Y, YE Y, et al. Investigation of surface effects through the
            [44]  FRISCHMANN  P  D,  HWA  Y,  CAIRNS  E  J,  et al.  Redox-active   application  of  the  functional  binders  in  lithium  sulfur  batteries  [J].
                 supramolecular polymer binders for lithium-sulfur batteries that adapt   Nano Energy, 2015,16: 28-37.
                 their  transport  properties  in  operando[J].  Chemistry  of  Materials,   [62]  LACEY  M  J,  JESCHULL  F,  EDSTROM  K,  et al.  Why  PEO  as  a
                 2016, 28(20): 7414-7421.                          binder or polymer coating increases capacity in the Li-S system[J].
            [45]  LIU J, SUN M, ZHANG Q, et al. A robust network binder with dual   Chemical Communications, 2013, 49(76): 8531-8533.
                          2+
                 functions of Cu  ions as ionic crosslinking and chemical binding agents   [63]  ZHONG Y J, LIU Z, ZHENG X, et al. Rate performance enhanced
                 for highly stable Li-S batteries[J]. Journal of Materials Chemistry A,   Li/S  batteries  with  a  Li  ion  conductive  gel-binder[J].  Solid  State
                 2018, 6(17): 7382-7388.                           Ionics, 2016, 289: 23-27.
            [46]  LIU J,  GALPAYA D G D,  YAN  L,  et al.  Exploiting  a  robust   [64]  LI G, CAI W, LIU B, et al. A multi functional binder with lithium ion
                 biopolymer  network  binder  for  an  ultrahigh-areal-capacity  Li-S   conductive polymer and polysulfide absorbents to improve cycleability
                 battery[J]. Energy & Environmental Science, 2017, 10(3): 750-755.   of lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 294:
            [47]  WALUŚ S, ROBBA A, BOUCHET R, et al. Influence of the binder   187-192.
                 and  preparation  process  on  the  positive  electrode  electrochemical   [65]  NAKAZAWA T, IKOMA A, KIDO R, et al. Effects of compatibility
                 response  and  Li/S  system  performances[J].  Electrochimica  Acta,   of polymer binders with solvate ionic liquid electrolytes on discharge
                 2016, 210: 492-501.                               and charge reactions of lithium-sulfur batteries[J]. Journal of Power
            [48]  PANG Q, LIANG X, KWOK C Y, et al. A comprehensive approach     Sources, 2016, 307: 746-752.
   48   49   50   51   52   53   54   55   56   57   58