Page 55 - 《精细化工》2020年第5期
P. 55

第 5 期                      海春杰,等:  双亲环氧树脂基荧光形状记忆薄膜的制备                                    ·905·


            2.5   薄膜的耐水性测试                                     较好的形状记忆性能,薄膜亦具有较好的耐水性。
                 由于固化膜 A、B 均含有双亲性大分子 WEG,                      价廉易得的原材料、环境友好的材料成型手段以及
            WEG 具有亲水性,引入亲水性成分会对固化膜的耐                           良好的光致发光性能与形状记忆性能使其有望在防
            水性有影响。因此,需要探究固化膜的耐水性行为。                            伪、显示以及智能高分子材料等领域得到应用。
                 固化膜的吸水率(W A )及耐水失重率(W X )如
                                                               参考文献:
            表 1 所示。
                                                               [1]   HASAN S M, EASLEY A D, MONROE M B B, et al. Development

                     表 1    固化膜的吸水率及耐水失重率                          of  siloxane-based  amphiphiles  as  cell  stabilizers  for  porous  shape
                                                                   memory polymer systems[J]. Journal of Colloid & Interface Science,
             Table 1    Water absorption and weight loss of the cured films
                                                                   2016, 478: 334-343.
                            样品质量/g                             [2]   ZHANG F H, ZHANG Z C, ZHOU T Y, et al. Shape memory polymer
                                               W A/%     W X/%     nanofibers and their composites: electrospinning, structure, performance
                       m 0     m 1    m 2
                                                                   and applications[J]. Frontiers in Materials, 2015, 2(62): 1-10.
              膜 A1    1.388   1.391   1.385   0.640   0.216    [3]   XIAO  X,  KONG  D,  QIU  X,  et al.  Shape  memory  polymers  with
              膜 A2    1.365   1.371   1.361   0.734   0.293        adjustable  high  glass  transition  temperatures[J].  Macromolecules,
                                                                   2015, 48(11): 3582-3589.
              膜 A3    1.392   1.399   1.387   0.865   0.360    [4]   LIU  Y  J,  WANG  X  H,  LAN  X  Z,  et al.  Shape  memory  polymer
              平均值      ―       ―       ―     0.746   0.290         composite  and  its  application  in  deployable  hinge  for  space
                                                                   structure[J]. ProcSpie, 2008, 6932: 693210-693215.
              膜 B1    1.427   1.433   1.423   0.703   0.281
                                                               [5]   ZHAO Q, QI H J, XIE T. Recent progress in shape memory polymer:
              膜 B2    1.398   1.405   1.393   0.861   0.359        New behavior, enabling materials, and mechanistic understanding[J].
              膜 B3    1.364   1.372   1.359   0.957   0.368        Progress in Polymer Science, 2015, 49/50: 79-120.
                                                               [6]   HUANG J, LIAO J, WANG T, et al. Super strong dopamine hydrogels
              平均值      ―       ―       ―     0.840   0.336         with shape memory and bioinspired actuating behaviours modulated

                                                                   by solvent exchange[J]. Soft Matter, 2018, 14(13): 2500- 2507.
                 由表 1 可知,固化膜 A 的 W A 和 W X 分别为                 [7]   HOFFMAN,  ALLAN  S.  Stimuli-responsive  polymers:  Biomedical
                                                                   applications  and  challenges  for  clinical  translation[J].  Advanced
            0.746%和 0.290%。固化膜 B 的 W A 和 W X 分别为                   Drug Delivery Reviews, 2013, 65(1): 10-16.
            0.840%和 0.336%。无论是否加入荧光剂,固化膜都                      [8]   TANG Z H, SUN D Q, YANG D, et al. Vapor grown carbon nanofiber
                                                                   reinforced  bio-based  polyester  for  electroactive  shape  memory
            具有较低的 W A 及 W X ,说明该法制备的固化膜具有                          performance[J]. Composites Science & Technology, 2013, 75(2): 15-21.
            较好的耐水性。这是因为双亲水大分子 WEG 保留                           [9]   KAVITHA,  REVATHI  A,  RAO  S, et al.  Characterization  of  shape
                                                                   memory  behaviour  of  CTBN-epoxy  resin  system[J].  Journal  of
            有环氧基团,在固化过程中能参与固化,固化后,                                 Polymer Research, 2012, 19(6): 1-7.
            大分子链之间发生内交联形成体型结构,阻碍了大                             [10]  YANG D, GAO D Y, ZENG C, et al. POSS-enhanced shape-memory
                                                                   copolymer of polynorbornene derivate and polycyclooctene through
            分子链段的运动,分子间结合得更加紧密,小分子                                 ring-opening  metathesis  polymerization[J].  Reactive  &  Functional
            难以渗透进去。                                                Polymers, 2011, 71(11): 1096-1101.
                                                               [11]  SHIBATA M, MATSUMOTO M, HIRAI Y, et al. Intramolecular folding
                                                                   or  intermolecular  self-assembly  of  amphiphilicrandom  copolymers:
            3   结论                                                 On-demand control by pendant design[J]. Macromolecules, 2018, 51(10):
                                                                   3738-3745.
                (1)通过将 mPEG2000、IPDI 及双酚 A 型环氧                 [12]  MILLERCHOU  B  A,  KOENIG  J  L.  A  review  of  polymer
                                                                   dissolution[J]. Progress in Polymer Science, 2003, 28(8): 1223-1270.
            树脂 E51 在物质的量比为 n(mPEG2000)∶n                       [13]  GERARD R. Micellization of block copolymers[J]. Progress in Polymer
            (IPDI)∶n(E51)=1.0∶1.0∶1.2 下反应得到双亲                      Science, 2003, 28(7): 1107-1170.
                                                               [14]  MAI  Y,  EISENBERG  A.  Self-assembly  of  block  copolymers[J].
            性大分子 WEG。该双亲性大分子与荧光剂、双酚 A                              Chemical Society Reviews, 2012, 41(18): 5969-5985.
            型环氧树脂 E51 在选择性溶剂(水)中共组装形成                          [15]  WANG C, WANG Z Q, ZHANG X. Amphiphilic building blocks for
                                                                   self-assembly: From amphiphiles to supra-amphiphiles[J]. Accounts
            水性乳液。WEG 自组装乳液的粒径分布在 300~                              of Chemical Research, 2012, 45(4): 608-618.
            600 nm。WEG/E51 共组装乳液粒径分布在 600~                     [16]  LEININGER S, OLENYUK B, STANG P J. Self-assembly of discrete
                                                                   cyclic nanostructures mediated by transition metals[J]. Chemical Reviews,
            950 nm,WEG/E51/荧光剂共组装乳液粒径分布在                           2000, 100(3): 853-908.
            650~1000 nm,三者均具有较小的粒径分布。且三者                       [17]  XIE M, SUN Y K, ZHANG Y, et al. One-pot synthesis of blue-green
                                                                   emitting fluorophores[J]. Chemistry Select, 2017, 2(4): 1370-1374.
            的储存稳定性及离心稳定性较好。                                    [18]  PALIVAN  G,  GOERS  R,  NAJER  A,  et al.  Bioinspired  polymer
                (2)不同质量浓度的荧光剂的共组装乳液均具                              vesicles and  membranes for biological and  medical  applications[J].
                                                                   Chemical Society Reviews, 2016, 45(2): 377-411.
            有显著的光致发光(荧光)行为,并且随着荧光剂                             [19]  WANG X R, ZHAO S X, CHEN Y, et al. Synthesis and photophysical
            添加量的增加,荧光强度也随之增强,且荧光剂的                                 properties of multilayer emitting π-p-π fluorophores[J]. Spectrochimica
                                                                   Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, DOI:
            添加量为 1.0%最佳。共组装乳液固化后的形状记忆
                                                                   10.1016/j.saa.2019.117680.
            薄膜也具有光致发光(荧光)行为。                                   [20]  JIAN Z L, HAO J L, JEN T Y, et al. New self curable, aqueous based
                (3)本实验制备的荧光形状记忆薄膜在热源下                              polyurethane system by an isophorone diisocyanate/uretedione aziridinyl
                                                                   derivative  process[J].  Journal  of  Applied  Polymer  Science,  2004,
            可在 7 s 内恢复至原始形状,恢复率为 94.4%,具有                          94(3): 845-859.
   50   51   52   53   54   55   56   57   58   59   60