Page 117 - 《精细化工》2020年第6期
P. 117
第 6 期 黄 勇,等: 软模板水热法制备空心 ZnFe 2 O 4 及其吸波性能 ·1183·
3 结论 5535-5546.
[13] ZHU L Y, ZENG X J, LI X P, et al. Hydrothermal synthesis of
magnetic Fe 3O 4/graphene composites with good electromagnetic
利用聚乙二醇 4000 作为表面活性剂,采用简单 microwave absorbing performances[J]. Journal of Magnetism and
的水热法,成功制备了具有空心结构的 ZnFe 2 O 4 纳 Magnetic Materials, 2017, 426: 114-120.
2+
[14] XING W J, CHEN J, WANG H, et al. Introduction of Zn in
米颗粒,分散较为均匀,粒径约为 100 nm。所制备 BaCoTiFe 10O 19 to tune electromagnetic parameters and improve
的空心 ZnFe 2 O 4 表现出优异的吸波性能,当样品的 microwave absorption properties[J]. Journal of Alloys and
匹配厚度为 2.7 mm 时,在 12.41 GHz 处获得最小的 Compounds, 2018, 731: 279-287.
[15] LIU Y K (刘延坤), FENG Y J (冯玉杰), WU X W (武晓威), et al.
反射损耗(–42.18 dB);而当匹配厚度为 3.0 mm 时, Preparation and electromagnetic wave absorption properties of
RL≤–10 dB(吸收率为 90%)的频带最宽,为 2.60 GHz M-type barium ferrite[J]. Materials Science and Technology (材料科
学与工艺), 2010, 18(2): 262-266.
(10.60~13.20 GHz)。相较于文献报道的溶胶-凝胶 [16] CHEN B Y, CHEN D, KANG Z T, et al. Preparation and microwave
和化学共沉淀等 ZnFe 2 O 4 制备方法 [23-24] ,本文采取 absorption properties of Ni–Co nanoferrites[J]. Journal of Alloys and
Compounds, 2015, 618: 222-226.
的软模板水热法工艺较为简单,获得的产物较为均 [17] LI Y B, YI R, YAN A G, et al. Facile synthesis and properties of
匀且结晶性好。 ZnFe 2O 4 and ZnFe 2O 4/polypyrrole core-shell nanoparticles[J]. Solid
State Sciences, 2009, 11: 1319-1324.
本文制备的空心 ZnFe 2 O 4 在吸波材料领域具有
[18] WANG M Y, HUANG Y, CHEN X F, et al. Synthesis of nitrogen and
潜在应用前景,而将其与其他介电材料复合进一步 sulfur co-doped graphene supported hollow ZnFe 2O 4 nanosphere
提高吸波性能将是下一步的研究重点。 composites for application in lithium-ion batteries[J]. Journal of
Alloys and Compounds, 2017, 691: 407-415.
[19] SHEN J H, MA G, ZHANG J M, et al. Facile fabrication of magnetic
参考文献: reduced graphene oxide-ZnFe 2O 4 composites with enhanced
[1] WANG H H (王海花), LUO L (罗璐), LI X R (李小瑞), et al. adsorption and photocatalytic activity[J]. Applied Surface Science,
Preparation and properties of polyaniline/Fe 3O 4 absorbing 2015, 359: 455-468.
materials[J]. Fine Chemicals (精细化工), 2017, 34(9): 988-995. [20] WON J M, CHOI S H, HONG Y J, et al. Electrochemical properties
[2] TU J Qi (涂金强), LI Z H (李志宏), ZHU Y M (朱玉梅), et al. of yolk-shell structured ZnFe 2O 4 powders prepared by a simple spray
Preparation and characterization of conductive polyaniline/foam drying process as anode material for lithium-ion battery[J]. Scientific
glass absorbing composites[J]. Fine Chemicals (精细化工), 2019, Reports, 2014, 4: 5857-5862.
36(11): 2193-2212. [21] LIU Z F, XING H L, WANG L, et al. Facial synthesis of Zn-doped
[3] YU L, YANG Q, LIAO J, et al. A novel 3D silver nanowires@ Fe 3O 4 with enhanced electromagnetic wave absorption performance
polypyrrole sponge loaded with water giving excellent microwave in S and C Bands[J]. Nano, 2016, 11(8): 910-921.
absorption properties[J]. Chemical Engineering Journal, 2018, 352: [22] FENG J T, WANG Y C, HOU Y H, et al. Tunable design of
490-500. yolk-shell ZnFe 2O 4@RGO@TiO 2 microspheres for enhanced
[4] SHU R W, ZHANG G Y, ZHANG J B, et al. Synthesis and high- high-frequency microwave absorption[J]. Inorganic Chemistry
performance microwave absorption of reduced graphene oxide/zinc Frontiers, 2017, 4: 935-945.
ferrite hybrid nanocomposite[J]. Materials Letters, 2018, 215: 229- [23] JEAN M, NACHBAUR V, Determination of milling parameters to
232. obtain mechanosynthesized ZnFe 2O 4[J]. Journal of Alloys and
[5] WANG X K, YIN L Y, CHEN C, et al. Synthesis of tremella-like Compounds, 2008, 454: 432-436.
graphene@SiC nano-structure for electromagnetic wave absorbing [24] KISLOV N, SRINIVASN S S, EMIROV Y, et al. Optical absorption
material application[J]. Journal of Alloys and Compounds, 2018, red and blue shifts in ZnFe 2O 4 nanoparticles[J]. Materials Science
741: 205-210. and Engineering: B, 2008, 153: 70-77.
[6] LI Y J, MA L, GAN M Y, et al. Magnetic PANI controlled by [25] LIU Z F, XING H L, LIU Y, et al. Hydrothermally synthesized Zn
morphology with enhanced microwave absorbing property[J]. ferrite/multi-walled carbon nanotubes composite with enhanced
Materials Letters, 2015, 140: 192-195. electromagnetic-wave absorption performance[J]. Journal of Alloys
[7] ZHOU C, GENG S, XU X W, et al. Light weight hollow carbon and Compounds, 2018, 731: 745-752.
nanospheres with tunable sizes towards enhancement in microwave [26] KHASHAN S A, ELNAJJAR E, HAIK Y, et al. CFD simulation of
absorption[J]. Carbon, 2016, 108: 234-241. the magnetophoretic separation in a microchannel[J]. Journal of
[8] YUAN X Y, CHENG L F, ZHANG L T, et al. Electromagnetic wave Magnetism and Magnetic Materials, 2011, 323: 2960-2967.
absorbing properties of SiC/SiO 2 composites with ordered inter-filled [27] EDA S I, FUJISHIMA M, TADA H, Low temperature-synthesis of
structure[J]. Journal of Alloys and Compounds, 2016, 680: 604-611. BiVO 4 nanorods using polyethylene glycol as a soft template and the
[9] XU M H, ZHONG W, WANG Z H, et al. Highly stable FeCo/carbon visible-light-activity for copper acetylacetonate decomposition[J].
composites: Magnetic properties and microwave response[J]. Physica Applied Catalysis B: Environmental, 2012, 125: 288-293.
E: Low-dimensional Systems and Nanostructures, 2013, 52: 14-20. [28] MEENA R S, BHATTACHRYA S, CHATTERJEE R, et al. Complex
[10] PHADTARE V D, PAEALE V G, LEE K Y, et al. Flexible and permittivity, permeability and microwave absorbing properties of
lightweight Fe 3O 4/polymer foam composites for microwave absorption (Mn 2−xZn x)U-type hexaferrite[J]. Journal of Magnetism and Magnetic
applications[J]. Journal of Alloys and Compounds, 2019, 805: 120- Materials, 2010, 322: 2908-2914.
129. [29] XING W J, WANG H, FAN Q B, et al. Hexagonal
[11] LIU Q H, CAO Q, BI H, et al. CoNi@SiO 2@TiO 2 and CoNi@Air@ Co/C/BaZn 0.2Co 0.8TiFe 10O 19 ternary hybrids: Synthetic method and
TiO 2 microspheres with strong wideband microwave absorption[J]. microwave absorption properties[J]. Journal of Alloys and
Advanced Materials, 2016, 28: 486-490. Compounds, 2018, 731: 515-523.
[12] LI X H, FENG J, DU Y P, et al. One-pot synthesis of [30] YANGZ W, WAN Y Z, XIONG G Y, et al. Facile synthesis of
CoFe 2O 4/graphene oxide hybrids and their conversion into ZnFe 2O 4/reduced graphene oxide nanohybrids for enhanced
FeCo/graphene hybrids for lightweight and highly efficient microwave absorption properties[J]. Materials Research Bulletin,
microwave absorber[J]. Journal of Materials Chemistry A, 2015, 3: 2015, 61: 292- 297.