Page 117 - 《精细化工》2020年第6期
P. 117

第 6 期                    黄   勇,等:  软模板水热法制备空心 ZnFe 2 O 4 及其吸波性能                         ·1183·


            3   结论                                                 5535-5546.
                                                               [13]  ZHU  L  Y,  ZENG  X  J,  LI  X  P,  et al.  Hydrothermal  synthesis  of
                                                                   magnetic  Fe 3O 4/graphene  composites  with  good  electromagnetic
                 利用聚乙二醇 4000 作为表面活性剂,采用简单                          microwave  absorbing  performances[J].  Journal  of  Magnetism  and
            的水热法,成功制备了具有空心结构的 ZnFe 2 O 4 纳                         Magnetic Materials, 2017, 426: 114-120.
                                                                                                          2+
                                                               [14]  XING  W  J,  CHEN  J,  WANG  H,  et al.  Introduction  of  Zn  in
            米颗粒,分散较为均匀,粒径约为 100 nm。所制备                             BaCoTiFe 10O 19  to  tune  electromagnetic  parameters  and  improve
            的空心 ZnFe 2 O 4 表现出优异的吸波性能,当样品的                         microwave  absorption  properties[J].  Journal  of  Alloys  and
            匹配厚度为 2.7 mm 时,在 12.41 GHz 处获得最小的                      Compounds, 2018, 731: 279-287.
                                                               [15]  LIU Y K (刘延坤), FENG Y J (冯玉杰), WU X W (武晓威), et al.
            反射损耗(–42.18 dB);而当匹配厚度为 3.0 mm 时,                      Preparation  and  electromagnetic  wave  absorption  properties  of
            RL≤–10 dB(吸收率为 90%)的频带最宽,为 2.60 GHz                    M-type barium ferrite[J]. Materials Science and Technology (材料科
                                                                   学与工艺), 2010, 18(2): 262-266.
            (10.60~13.20 GHz)。相较于文献报道的溶胶-凝胶                    [16]  CHEN B Y, CHEN D, KANG Z T, et al. Preparation and microwave
            和化学共沉淀等 ZnFe 2 O 4 制备方法         [23-24] ,本文采取          absorption properties of Ni–Co nanoferrites[J]. Journal of Alloys and
                                                                   Compounds, 2015, 618: 222-226.
            的软模板水热法工艺较为简单,获得的产物较为均                             [17]  LI  Y  B, YI  R, YAN A  G,  et al.  Facile  synthesis  and  properties  of
            匀且结晶性好。                                                ZnFe 2O 4 and ZnFe 2O 4/polypyrrole core-shell nanoparticles[J]. Solid
                                                                   State Sciences, 2009, 11: 1319-1324.
                 本文制备的空心 ZnFe 2 O 4 在吸波材料领域具有
                                                               [18]  WANG M Y, HUANG Y, CHEN X F, et al. Synthesis of nitrogen and
            潜在应用前景,而将其与其他介电材料复合进一步                                 sulfur  co-doped  graphene  supported  hollow  ZnFe 2O 4  nanosphere
            提高吸波性能将是下一步的研究重点。                                      composites  for  application  in  lithium-ion  batteries[J].  Journal of
                                                                   Alloys and Compounds, 2017, 691: 407-415.
                                                               [19]  SHEN J H, MA G, ZHANG J M, et al. Facile fabrication of magnetic
            参考文献:                                                  reduced  graphene  oxide-ZnFe 2O 4  composites  with  enhanced
            [1]   WANG  H  H  (王海花), LUO  L (罗璐),  LI  X  R  (李小瑞),  et al.   adsorption  and  photocatalytic  activity[J].  Applied  Surface  Science,
                 Preparation  and  properties  of  polyaniline/Fe 3O 4  absorbing   2015, 359: 455-468.
                 materials[J]. Fine Chemicals (精细化工), 2017, 34(9): 988-995.     [20]  WON J M, CHOI S H, HONG Y J, et al. Electrochemical properties
            [2]   TU J Qi  (涂金强),  LI  Z  H  (李志宏),  ZHU Y M  (朱玉梅),  et al.   of yolk-shell structured ZnFe 2O 4 powders prepared by a simple spray
                 Preparation  and  characterization  of  conductive  polyaniline/foam   drying process as anode material for lithium-ion battery[J]. Scientific
                 glass  absorbing  composites[J].  Fine  Chemicals  (精细化工),  2019,   Reports, 2014, 4: 5857-5862.
                 36(11): 2193-2212.                            [21]  LIU Z F, XING H L, WANG L, et al. Facial synthesis of Zn-doped
            [3]   YU  L,  YANG  Q,  LIAO  J,  et al.  A  novel  3D  silver  nanowires@   Fe 3O 4 with enhanced electromagnetic wave absorption performance
                 polypyrrole  sponge  loaded  with  water  giving  excellent  microwave   in S and C Bands[J]. Nano, 2016, 11(8): 910-921.
                 absorption  properties[J].  Chemical  Engineering  Journal,  2018,  352:   [22]  FENG  J  T,  WANG  Y  C,  HOU  Y  H,  et al.  Tunable  design  of
                 490-500.                                          yolk-shell  ZnFe 2O 4@RGO@TiO 2  microspheres  for  enhanced
            [4]   SHU R W,  ZHANG G Y, ZHANG J  B, et al. Synthesis and high-   high-frequency  microwave  absorption[J].  Inorganic  Chemistry
                 performance  microwave  absorption of reduced graphene oxide/zinc   Frontiers, 2017, 4: 935-945.
                 ferrite  hybrid  nanocomposite[J].  Materials  Letters,  2018, 215: 229-   [23]  JEAN  M,  NACHBAUR  V,  Determination  of  milling  parameters  to
                 232.                                              obtain  mechanosynthesized  ZnFe 2O 4[J].  Journal  of  Alloys  and
            [5]   WANG  X  K,  YIN  L  Y,  CHEN  C,  et al.  Synthesis  of  tremella-like   Compounds, 2008, 454: 432-436.
                 graphene@SiC  nano-structure  for  electromagnetic  wave  absorbing   [24]  KISLOV N, SRINIVASN S S, EMIROV Y, et al. Optical absorption
                 material  application[J].  Journal  of  Alloys  and  Compounds,  2018,   red  and  blue  shifts  in  ZnFe 2O 4  nanoparticles[J].  Materials  Science
                 741: 205-210.                                     and Engineering: B, 2008, 153: 70-77.
            [6]   LI Y J,  MA  L,  GAN  M  Y,  et al.  Magnetic  PANI  controlled  by   [25]  LIU Z F, XING H L, LIU Y, et al. Hydrothermally synthesized Zn
                 morphology  with  enhanced  microwave  absorbing  property[J].   ferrite/multi-walled  carbon  nanotubes  composite  with  enhanced
                 Materials Letters, 2015, 140: 192-195.            electromagnetic-wave  absorption  performance[J].  Journal  of  Alloys
            [7]   ZHOU  C,  GENG  S,  XU  X  W,  et al.  Light  weight  hollow  carbon   and Compounds, 2018, 731: 745-752.
                 nanospheres with tunable sizes towards enhancement in microwave   [26]  KHASHAN S A, ELNAJJAR E, HAIK Y, et al. CFD simulation of
                 absorption[J]. Carbon, 2016, 108: 234-241.        the  magnetophoretic  separation  in  a  microchannel[J].  Journal  of
            [8]   YUAN X Y, CHENG L F, ZHANG L T, et al. Electromagnetic wave   Magnetism and Magnetic Materials, 2011, 323: 2960-2967.
                 absorbing properties of SiC/SiO 2 composites with ordered inter-filled   [27]  EDA S I, FUJISHIMA M, TADA H, Low temperature-synthesis of
                 structure[J]. Journal of Alloys and Compounds, 2016, 680: 604-611.     BiVO 4 nanorods using polyethylene glycol as a soft template and the
            [9]   XU M H, ZHONG W, WANG Z H, et al. Highly stable FeCo/carbon   visible-light-activity  for  copper  acetylacetonate  decomposition[J].
                 composites: Magnetic properties and microwave response[J]. Physica   Applied Catalysis B: Environmental, 2012, 125: 288-293.
                 E: Low-dimensional Systems and Nanostructures, 2013, 52: 14-20.    [28]  MEENA R S, BHATTACHRYA S, CHATTERJEE R, et al. Complex
            [10]  PHADTARE  V  D,  PAEALE  V  G,  LEE  K  Y,  et al.  Flexible  and   permittivity,  permeability  and  microwave  absorbing  properties  of
                 lightweight Fe 3O 4/polymer foam composites for microwave absorption   (Mn 2−xZn x)U-type hexaferrite[J]. Journal of Magnetism and Magnetic
                 applications[J]. Journal of Alloys and Compounds, 2019, 805: 120-   Materials, 2010, 322: 2908-2914.
                 129.                                          [29]  XING  W  J,  WANG  H,  FAN  Q  B,  et al.  Hexagonal
            [11]  LIU Q H, CAO Q, BI H, et al. CoNi@SiO 2@TiO 2 and CoNi@Air@   Co/C/BaZn 0.2Co 0.8TiFe 10O 19  ternary  hybrids:  Synthetic  method  and
                 TiO 2  microspheres  with  strong  wideband  microwave  absorption[J].   microwave  absorption  properties[J].  Journal  of  Alloys  and
                 Advanced Materials, 2016, 28: 486-490.            Compounds, 2018, 731: 515-523.
            [12]  LI  X  H,  FENG  J,  DU  Y  P,  et al.  One-pot  synthesis  of   [30]  YANGZ  W,  WAN  Y  Z,  XIONG  G  Y,  et al.  Facile  synthesis  of
                 CoFe 2O 4/graphene  oxide  hybrids  and  their  conversion  into   ZnFe 2O 4/reduced  graphene  oxide  nanohybrids  for  enhanced
                 FeCo/graphene  hybrids  for  lightweight  and  highly  efficient   microwave  absorption  properties[J].  Materials  Research  Bulletin,
                 microwave absorber[J]. Journal of Materials Chemistry A, 2015, 3:   2015, 61: 292- 297.
   112   113   114   115   116   117   118   119   120   121   122