Page 38 - 《精细化工》2020年第6期
P. 38

·1104·                            精细化工   FINE CHEMICALS                                 第 37 卷

            用范围;新型聚合技术可以赋予乳液粒子不同的形                             [11]  SU  J,  YANG  Y,  CHEN  Y,  et al.  Synthesis  of  polystyrene-grafted
            态,使其具有特定的功能。如何制备绿色友好、性                                 nanosilica via nitroxide radical coupling reaction and its application
                                                                   in UV-curable acrylate-based coating systems[J]. Progress in Organic
            能优异、附加值高的丙烯酸酯乳液是一个发展方向。                                Coatings, 2018, 119: 76-84.
                 目前,对纳米粒子表面进行改性处理是解决纳                          [12]  YAO  B,  ZHAO  H,  WANG  L,  et al.  Synthesis  of  acrylate-based
                                                                   UV/thermal dual-cure coatings for antifogging[J]. Journal of Coatings
            米粒子在聚合物中分散问题最有效的方法。对纳米                                 Technology and Research, 2018, 15(1): 149-158.
            粒子表面改性可以降低纳米粒子的表面能、减弱纳                             [13]  LIU F, LIU G. Enhancement of UV-aging resistance of UV-curable
            米粒子的表面极性和提高与聚合物基体的亲和力;                                 polyurethane  acrylate  coatings via  incorporation of  hindered  amine
                                                                   light stabilizers-functionalized TiO 2-SiO 2 nanoparticles[J]. Journal of
            偶联剂可以很大程度上改善纳米粒子的分散性,但                                 Polymer Research, 2018, 25(2): 59.
            粒子仍有少量团聚,开发新型偶联剂来提高纳米粒                             [14]  MA W, LI S, KOU D, et al. Flexible, self-standing and patternable P
                                                                   (MMA-BA)/TiO 2 photonic crystals with tunable and bright structural
            子的分散性也是一个值得深究的课题。通过研究纳                                 colors[J]. Dyes and Pigments, 2019, 160: 740-746.
            米粒子与聚合物基体结构与性能的关系来了解两者                             [15]  WANG C, SHENG X, XIE D, et al. High-performance TiO 2/polyacrylate
            相互作用的机理是工业化的前提。使用纳米粒子与                                 nanocomposites  with  enhanced  thermal  and  excellent  UV-shielding
                                                                   properties[J]. Progress in Organic Coatings, 2016, 101: 597-603.
            其他功能单体复合对丙烯酸酯进行改性也是未来丙                             [16]  XIANG  B,  ZHANG  J.  Using  ultrasound-assisted  dispersion  and in
            烯酸酯改性的发展方向之一,多种功能单体复合可                                 situ emulsion polymerization to synthesize TiO 2/ASA (acrylonitrile-
                                                                   styrene-acrylate)  nanocomposites[J].  Composites,  Part  B:  Engineering,
            以使改性丙烯酸酯兼具各种材料的特性,对丙烯酸                                 2016, 99: 196-202.
            酯的应用与发展具有非常重要的意义。随着新型纳                             [17]  ZHANG  Y,  ZHANG  S,  WU  S.  Room-temperature  fabrication  of
            米材料的不断发现,新方法、新工艺的出现必将使                                 TiO 2-PHEA  nanocomposite  coating  with  high  transmittance  and
                                                                   durable superhydrophilicity[J]. Chemical Engineering Journal, 2019,
            问题得到解决,通过对纳米复合材料的结构进行设                                 371: 609-617.
            计,有效控制纳米粒子的分布、结构和尺寸,从而                             [18]  QI Y, XIANG B, TAN W, et al. Hydrophobic surface modification of
                                                                   TiO 2  nanoparticles  for  production  of  acrylonitrile-styrene-acrylate
            开发出性能优异的聚丙烯酸酯复合材料。
                                                                   terpolymer/TiO 2  composited  cool  materials[J].  Applied  Surface
                                                                   Science, 2017, 419: 213-223.
            参考文献:                                              [19]  GAO D, FENG J, MA J, et al. Zinc oxide sol-containing diallylmethyl
            [1]   ZHU L, SHAN S, PETKOV V, et al. Ruthenium-nickel-nickel hydroxide   alkyl  quaternary  ammonium  salt  synthesized  by  sol-gel  process:
                 nanoparticles  for  room  temperature  catalytic  hydrogenation[J].   Characterization and properties[J]. The Journal of The Textile Institute,
                 Journal of Materials Chemistry A, 2017, 5(17): 7869-7875.   2015, 106(6): 593-600.
            [2]   ZHU L, JIANG Y, ZHENG J, et al. Ultrafine nanoparticle-supported   [20]  PANNASRI P, SIRIPHANNON P, MONVISADE P, et al. Hydrothermal
                                                                   growth of ZnO nanostructures from nano-ZnO seeded in P (MMA-
                 Ru  nanoclusters  with  ultrahigh  catalytic  activity[J].  Small,  2015,
                                                                   co-BA) matrix[J]. Journal of Polymer Research, 2011, 18(6): 2245-2254.
                 11(34): 4385-4393.
                                                               [21]  JIANG H, WANG Y, QUAN H, et al. Synthesis and characterization
            [3]   WÅHLANDER  M,  NILSSON  F,  LARSSON  E,  et al.  Polymer-
                 grafted  Al 2O 3-nanoparticles  for  controlled  dispersion  in  poly  (ethylene-   of  waterborne  polyurethane  modified  by  acrylate/nano-ZnO  for
                 co-butyl acrylate) nanocomposites[J]. Polymer, 2014, 55(9): 2125-2138.   dyeing of cotton fabrics[J]. Fibers and Polymers, 2018, 19(4): 703-710.
            [4]   POURJAVADI  A,  ABEDIN-MOGHANAKI  A,  NASSERI  S  A.  A   [22]  MA X Y, ZHANG W D. Effects of flower-like ZnO nanowhiskers on
                 new functionalized magnetic nanocomposite of poly (methylacrylate)   the  mechanical,  thermal  and  antibacterial  properties  of  waterborne
                 for  the  efficient  removal  of  anionic  dyes  from  aqueous  media[J].   polyurethane[J].  Polymer  Degradation  and  Stability,  2009,  94(7):
                 RSC Advances, 2016, 6(10): 7982-7989.             1103-1109.
                                                               [23]  LI C, TAN J, LI H, et al. Fast magnetic-field-induced formation of
            [5]   REN  X  M,  WEI  Y  H,  ZHAO  H,  et al.  Accurately  controlling  the
                                                                   one-dimensional  structured  chain-like  materials  via  sintering  of
                 shell thickness in the core–shell microspheres with single silica core
                                                                   Fe 3O 4/poly  (styrene-co-n-butyl  acrylate-co-acrylic  acid)  hybrid
                 and poly (butyl acrylate) rubber shell via emulsion polymerization[J].
                                                                   microspheres[J]. RSC Advances, 2015, 5(36): 28735-28742.
                 Colloid and Polymer Science, 2018, 296(3): 575-584.   [24]  MAHDAVIAN  A  R,  ASHJARI  M,  MOBARAKEH  H  S.
            [6]   HUANG  Y,  LV  Z,  CAO  Z,  et al.  A  green  and  facile  method  to   Nanocomposite particles with core-shell morphology.Ⅰ. Preparation
                 fabricate  superhydrophobic  coatings[J].  Surface  Engineering,  2019,   and characterization of Fe 3O 4–poly (butyl acrylate-styrene) particles
                 35(5): 435-439.                                   via  miniemulsion  polymerization[J].  Journal  of  Applied  Polymer
            [7]   GUO  S,  WANG  X,  GAO  Z,  et al.  Easy  fabrication  of  poly  (butyl   Science, 2008, 110(2): 1242-1249.
                 acrylate)/silicon dioxide core-shell composite microspheres through   [25]  RAHMAN  O  U,  KASHIF  M,  AHMAD  S.  Nanoferrite  dispersed
                 ultrasonically  initiated  encapsulation  emulsion  polymerization[J].
                                                                   waterborne epoxy-acrylate: Anticorrosive nanocomposite coatings[J].
                 Ultrasonics Sonochemistry, 2018, 48: 19-29.
                                                                   Progress in Organic Coatings, 2015, 80: 77-86.
            [8]   BALOŠ  S,  PILIĆ  B,  PETROVIĆ  D,  et al.  Flexural  strength  and
                                                               [26]  CHEN  B,  FANG  S,  CHEN  T,  et al.  Preparation  of  compound  P
                 modulus  of  autopolimerized  poly  (methyl  methacrylate)  with
                                                                   (MMA-AA-EA)/Fe 3O 4  superparamagnetic  nanoparticles  and  their
                 nanosilica[J]. Vojnosanitetski Pregled, 2018, 75(6): 564-569.   performance in selective adsorption of azo dye[J]. Advanced Powder
            [9]   SHANTI R, BELLA F, SALIM Y S, et al. Poly (methyl methacrylate-   Technology, 2016, 27(6): 2462-2469.
                 co-butyl acrylate-co-acrylic acid): Physico-chemical characterization   [27]  WANG X, LI Q, WANG Y, et al. Synthesis and absorption organics
                 and  targeted  dye  sensitized  solar  cell  application[J].  Materials  &   of  biomorphic  hollow  fibers  Al 2O 3 and  acrylic ester-based crosslinked
                 Design, 2016, 108: 560-569.                       resin composite[J]. Polymer Composites, 2018, 39(6): 1988-1993.
            [10]  SBARDELLA  F,  PRONTI  L,  SANTARELLI  M,  et al.  Waterborne   [28]  JIANG  X,  LUO  R,  PENG  F,  et al.  Synthesis,  characterization  and
                 acrylate-based  hybrid  coatings  with  enhanced  resistance  properties   thermal  properties  of  paraffin  microcapsules  modified  with
                 on stone surfaces[J]. Coatings, 2018, 8(8): 283.   nano-Al 2O 3[J]. Applied Energy, 2015, 137: 731-737.
   33   34   35   36   37   38   39   40   41   42   43