Page 38 - 《精细化工》2020年第6期
P. 38
·1104· 精细化工 FINE CHEMICALS 第 37 卷
用范围;新型聚合技术可以赋予乳液粒子不同的形 [11] SU J, YANG Y, CHEN Y, et al. Synthesis of polystyrene-grafted
态,使其具有特定的功能。如何制备绿色友好、性 nanosilica via nitroxide radical coupling reaction and its application
in UV-curable acrylate-based coating systems[J]. Progress in Organic
能优异、附加值高的丙烯酸酯乳液是一个发展方向。 Coatings, 2018, 119: 76-84.
目前,对纳米粒子表面进行改性处理是解决纳 [12] YAO B, ZHAO H, WANG L, et al. Synthesis of acrylate-based
UV/thermal dual-cure coatings for antifogging[J]. Journal of Coatings
米粒子在聚合物中分散问题最有效的方法。对纳米 Technology and Research, 2018, 15(1): 149-158.
粒子表面改性可以降低纳米粒子的表面能、减弱纳 [13] LIU F, LIU G. Enhancement of UV-aging resistance of UV-curable
米粒子的表面极性和提高与聚合物基体的亲和力; polyurethane acrylate coatings via incorporation of hindered amine
light stabilizers-functionalized TiO 2-SiO 2 nanoparticles[J]. Journal of
偶联剂可以很大程度上改善纳米粒子的分散性,但 Polymer Research, 2018, 25(2): 59.
粒子仍有少量团聚,开发新型偶联剂来提高纳米粒 [14] MA W, LI S, KOU D, et al. Flexible, self-standing and patternable P
(MMA-BA)/TiO 2 photonic crystals with tunable and bright structural
子的分散性也是一个值得深究的课题。通过研究纳 colors[J]. Dyes and Pigments, 2019, 160: 740-746.
米粒子与聚合物基体结构与性能的关系来了解两者 [15] WANG C, SHENG X, XIE D, et al. High-performance TiO 2/polyacrylate
相互作用的机理是工业化的前提。使用纳米粒子与 nanocomposites with enhanced thermal and excellent UV-shielding
properties[J]. Progress in Organic Coatings, 2016, 101: 597-603.
其他功能单体复合对丙烯酸酯进行改性也是未来丙 [16] XIANG B, ZHANG J. Using ultrasound-assisted dispersion and in
烯酸酯改性的发展方向之一,多种功能单体复合可 situ emulsion polymerization to synthesize TiO 2/ASA (acrylonitrile-
styrene-acrylate) nanocomposites[J]. Composites, Part B: Engineering,
以使改性丙烯酸酯兼具各种材料的特性,对丙烯酸 2016, 99: 196-202.
酯的应用与发展具有非常重要的意义。随着新型纳 [17] ZHANG Y, ZHANG S, WU S. Room-temperature fabrication of
米材料的不断发现,新方法、新工艺的出现必将使 TiO 2-PHEA nanocomposite coating with high transmittance and
durable superhydrophilicity[J]. Chemical Engineering Journal, 2019,
问题得到解决,通过对纳米复合材料的结构进行设 371: 609-617.
计,有效控制纳米粒子的分布、结构和尺寸,从而 [18] QI Y, XIANG B, TAN W, et al. Hydrophobic surface modification of
TiO 2 nanoparticles for production of acrylonitrile-styrene-acrylate
开发出性能优异的聚丙烯酸酯复合材料。
terpolymer/TiO 2 composited cool materials[J]. Applied Surface
Science, 2017, 419: 213-223.
参考文献: [19] GAO D, FENG J, MA J, et al. Zinc oxide sol-containing diallylmethyl
[1] ZHU L, SHAN S, PETKOV V, et al. Ruthenium-nickel-nickel hydroxide alkyl quaternary ammonium salt synthesized by sol-gel process:
nanoparticles for room temperature catalytic hydrogenation[J]. Characterization and properties[J]. The Journal of The Textile Institute,
Journal of Materials Chemistry A, 2017, 5(17): 7869-7875. 2015, 106(6): 593-600.
[2] ZHU L, JIANG Y, ZHENG J, et al. Ultrafine nanoparticle-supported [20] PANNASRI P, SIRIPHANNON P, MONVISADE P, et al. Hydrothermal
growth of ZnO nanostructures from nano-ZnO seeded in P (MMA-
Ru nanoclusters with ultrahigh catalytic activity[J]. Small, 2015,
co-BA) matrix[J]. Journal of Polymer Research, 2011, 18(6): 2245-2254.
11(34): 4385-4393.
[21] JIANG H, WANG Y, QUAN H, et al. Synthesis and characterization
[3] WÅHLANDER M, NILSSON F, LARSSON E, et al. Polymer-
grafted Al 2O 3-nanoparticles for controlled dispersion in poly (ethylene- of waterborne polyurethane modified by acrylate/nano-ZnO for
co-butyl acrylate) nanocomposites[J]. Polymer, 2014, 55(9): 2125-2138. dyeing of cotton fabrics[J]. Fibers and Polymers, 2018, 19(4): 703-710.
[4] POURJAVADI A, ABEDIN-MOGHANAKI A, NASSERI S A. A [22] MA X Y, ZHANG W D. Effects of flower-like ZnO nanowhiskers on
new functionalized magnetic nanocomposite of poly (methylacrylate) the mechanical, thermal and antibacterial properties of waterborne
for the efficient removal of anionic dyes from aqueous media[J]. polyurethane[J]. Polymer Degradation and Stability, 2009, 94(7):
RSC Advances, 2016, 6(10): 7982-7989. 1103-1109.
[23] LI C, TAN J, LI H, et al. Fast magnetic-field-induced formation of
[5] REN X M, WEI Y H, ZHAO H, et al. Accurately controlling the
one-dimensional structured chain-like materials via sintering of
shell thickness in the core–shell microspheres with single silica core
Fe 3O 4/poly (styrene-co-n-butyl acrylate-co-acrylic acid) hybrid
and poly (butyl acrylate) rubber shell via emulsion polymerization[J].
microspheres[J]. RSC Advances, 2015, 5(36): 28735-28742.
Colloid and Polymer Science, 2018, 296(3): 575-584. [24] MAHDAVIAN A R, ASHJARI M, MOBARAKEH H S.
[6] HUANG Y, LV Z, CAO Z, et al. A green and facile method to Nanocomposite particles with core-shell morphology.Ⅰ. Preparation
fabricate superhydrophobic coatings[J]. Surface Engineering, 2019, and characterization of Fe 3O 4–poly (butyl acrylate-styrene) particles
35(5): 435-439. via miniemulsion polymerization[J]. Journal of Applied Polymer
[7] GUO S, WANG X, GAO Z, et al. Easy fabrication of poly (butyl Science, 2008, 110(2): 1242-1249.
acrylate)/silicon dioxide core-shell composite microspheres through [25] RAHMAN O U, KASHIF M, AHMAD S. Nanoferrite dispersed
ultrasonically initiated encapsulation emulsion polymerization[J].
waterborne epoxy-acrylate: Anticorrosive nanocomposite coatings[J].
Ultrasonics Sonochemistry, 2018, 48: 19-29.
Progress in Organic Coatings, 2015, 80: 77-86.
[8] BALOŠ S, PILIĆ B, PETROVIĆ D, et al. Flexural strength and
[26] CHEN B, FANG S, CHEN T, et al. Preparation of compound P
modulus of autopolimerized poly (methyl methacrylate) with
(MMA-AA-EA)/Fe 3O 4 superparamagnetic nanoparticles and their
nanosilica[J]. Vojnosanitetski Pregled, 2018, 75(6): 564-569. performance in selective adsorption of azo dye[J]. Advanced Powder
[9] SHANTI R, BELLA F, SALIM Y S, et al. Poly (methyl methacrylate- Technology, 2016, 27(6): 2462-2469.
co-butyl acrylate-co-acrylic acid): Physico-chemical characterization [27] WANG X, LI Q, WANG Y, et al. Synthesis and absorption organics
and targeted dye sensitized solar cell application[J]. Materials & of biomorphic hollow fibers Al 2O 3 and acrylic ester-based crosslinked
Design, 2016, 108: 560-569. resin composite[J]. Polymer Composites, 2018, 39(6): 1988-1993.
[10] SBARDELLA F, PRONTI L, SANTARELLI M, et al. Waterborne [28] JIANG X, LUO R, PENG F, et al. Synthesis, characterization and
acrylate-based hybrid coatings with enhanced resistance properties thermal properties of paraffin microcapsules modified with
on stone surfaces[J]. Coatings, 2018, 8(8): 283. nano-Al 2O 3[J]. Applied Energy, 2015, 137: 731-737.