Page 40 - 《精细化工》2020年第6期
P. 40

·1106·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 Analysis and Calorimetry, 2019, 135(4): 2159-2169.   [74]  XIE  Y,  LIU  W,  LIU  C,  et al.  Investigation  of  covalently  grafted
            [64]  MURARIU M, PAINT Y, MURARIU O, et al. Current progress in   polyacrylate chains onto graphene oxide for epoxy composites with
                 the  production  of  PLA-ZnO  nanocomposites:  Beneficial  effects  of   reinforced  mechanical  performance[J].  Journal  of  Applied  Polymer
                 chain  extender  addition  on  key  properties[J].  Journal  of  Applied   Science, 2019, 136(32): 47842.
                 Polymer Science, 2015, 132(48): 42480-42490.   [75]  JIANG X, ZHAI S, JIANG X, et al. Synthesis of PAA-g-PNIPAM
            [65]  ROMO-URIBE  A.  Dynamics  and  viscoelastic  behavior  of  waterborne   well-defined graft polymer by sequential RAFT and SET-LRP and its
                 acrylic polymer/silica nanocomposite coatings[J]. Progress in Organic   application  in  preparing  size-controlled  super-paramagnetic  Fe 3O 4
                 Coatings, 2019, 129: 125-132.                     nanoparticles as a stabilizer[J]. Polymer, 2014, 55(16): 3703-3712.
            [66]  LI  X,  WANG  S,  XIE  J,  et al.  Polyurethane  acrylate-supported   [76]  PODDAR  M  K,  SHARMA  S,  PATTIPAKA  S,  et al.  Ultrasound-
                 rGO/TiO 2 electrical conductive and antibacterial nanocomposites[J].   assisted synthesis of poly (MMA-co-BA)/ZnO nanocomposites with
                 International  Journal  of  Polymeric  Materials  and  Polymeric   enhanced  physical  properties[J].  Ultrasonics  Sonochemistry,  2017,
                 Biomaterials, 2019, 68(6): 319-327.               39: 782-791.
            [67]  CHENG  P  S,  ZENG  K  M,  CHEN  J  H.  Preparation  and   [77]  CHEN  G,  WU  L,  XU  J,  et al.Novel  preparation  method  and  the
                 characterization  of  transparent  and  UV-shielding  epoxy/SR-494/   characterization  of  polyurethane-acrylate/nano-SiO 2 emulsions[J].
                 APTMS/ZnO  nanocomposites  with  high  heat  resistance  and  anti-   Science and Engineering of Composite Materials, 2018, 25(3): 603-610.
                 static properties[J]. Journal of the Chinese Chemical Society, 2014,   [78]  SHABAN  M,  POOSTFOROOSHAN  J,  WEBER  A  P.  Surface-
                 61(3): 320-328.                                   initiated  polymerization  on  unmodified  inorganic  semiconductor
            [68]  LIU J,  MA J,  BAO  Y,  et al.  Nanoparticle  morphology  and  film-   nanoparticles  via  surfactant-free  aerosol-based  synthesis  toward
                 forming behavior of polyacrylate/ZnO nanocomposite[J]. Composites   core-shell nanohybrids with a tunable shell thickness[J]. Journal of
                 Science and Technology, 2014, 98: 64-71.          Materials Chemistry A, 2017, 5(35): 18651-18663.
            [69]  POORMOHAMMADIAN S J, DARVISHI P, DEZFULI A M G, et   [79]  LIAO W, GU A, LIANG G, et al. New high performance transparent
                 al. Incorporation of functionalized silica nanoparticles into polymeric   UV-curable poly (methyl methacrylate) grafted ZnO/silicone-acrylate
                 films  for  enhancement  of  water  absorption  and  water  vapor   resin  composites  with  simultaneously  improved  integrated
                 transition[J]. Fibers and Polymers, 2018, 19(10): 2066-2079.   performance[J].  Colloids  and  Surfaces  A:  Physicochemical  and
            [70]  PROVOST M, RAULIN K, MAINDRON T, et al. Influence of silane   Engineering Aspects, 2012, 396: 74-82.
                 coupling agent on the properties of UV curable SiO 2-PMMA hybrid   [80]  LÜ  N,  LÜ  X,  JIN  X,  et al.  Preparation  and  characterization  of
                 nanocomposite[J]. Journal of Sol-Gel Science and Technology, 2019,   UV-curable ZnO/polymer nanocomposite films[J]. Polymer International,
                 89(3): 796-806.                                   2007, 56(1): 138-143.
            [71]  ZHENG C F,  YANG  Z  F, LV  C  C,  et al.  Thermal  stability  and   [81]  LI J, YIN Y, MUHAMMAD Y, et al. Preparation and properties of
                 abrasion  resistance  of  polyacrylate/nano-silica  hybrid  coatings[J].   modified  graphene  oxide  incorporated  waterborne  polyurethane
                 Iranian Polymer Journal, 2013, 22(7): 465-471.    acrylate[J]. Polymer International, 2019, 68(6): 1091-1101.
            [72]  GANGULY S, BHAWAL P, CHOUDHURY A, et al. Preparation and   [82]  WANG  D,  LIU  H,  YANG  J,  et al.  Seawater-induced  healable
                 properties  of  halloysite  nanotubes/poly  (ethylene  methyl  acrylate)-   underwater  superoleophobic  antifouling  coatings[J].  ACS  Applied
                 based nanocomposites by variation of mixing methods[J]. Polymer-   Materials & Interfaces, 2018, 11(1): 1353-1362.
                 Plastics Technology and Engineering, 2018, 57(10): 997-1014.   [83]  FU Y, CUI J, HUANG Q, et al. Click-based transparent durable films
            [73]  YANG  F,  NELSON  G  L.  Polymer/silica  nanocomposites  prepared   derived  from  tetrabrachius  PDMS-bridged  epoxy  acrylates  and
                 via  extrusion[J].  Polymers  for  advanced  technologies,  2006,  17(4):   surface modified nanosilica particles[J]. Progress in Organic Coatings,
                 320-326.                                          2018, 117: 166-173.


            (上接第 1087 页)                                           Physical Chemistry C, 2010, 114(13): 5786-5791.
                                                               [65]  BAGCHI A, NOMURA S. On the effective thermal conductivity of
            [58]  MORTAZAVI  B,  BARDON  J,  AHZI  S.  Interphase  effect  on  the
                                                                   carbon  nanotube  reinforced  polymer  composites[J].  Composites
                 elastic and thermal conductivity response of polymer nanocomposite   Science and Technology, 2006, 66(11/12): 1703-1712.
                 materials:  3D  finite  element  study[J].  Computational  Materials   [66]  HAN  Z,  FINA  A.  Thermal  conductivity  of  carbon  nanotubes  and
                 Science, 2013, 69(1): 100-106.                    their  polymer  nanocomposites:  A  review[J].  Progress  in  Polymer
            [59]  BEHABTU N, YOUNG C C, TSENTALOVICH D E, et al. Strong,
                 light,  multifunctional  fibers  of  carbon  nanotubes  with  ultrahigh   Science, 2011, 36(7): 914-944.
                 conductivity[J]. Science, 2013, 339(6116): 182-186.   [67]  GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Evaluation
            [60]  YANG F, DAMES C. Mean free path spectra as a tool to understand   and identification of electrical and thermal conduction mechanisms
                                                                   in  carbon  nanotube/epoxy  composites[J].  Polymer,  2006,  47(6):
                 thermal conductivity in bulk and nanostructures[J]. Physical Review
                                                                   2036-2045.
                 B, 2013, 87(3): 035437.
                                                               [68]  CHU K, WU Q Y, JIA C C, et al. Fabrication and effective thermal
            [61]  YU  J  K,  MITROVIC  S,  THAM  D,  et al.  Reduction  of  thermal
                                                                   conductivity of multi-walled carbon nanotubes reinforced Cu matrix
                 conductivity   in   phononic   nanomesh   structures[J].   Nature
                 Nanotechnology, 2010, 5(10): 718-721.             composites  for  heat  sink  applications[J].  Composites  Science  and
            [62]  DING  Y,  ALIAS  H,  WEN  D,  et al.  Heat  transfer  of  aqueous   Technology, 2010, 70(2): 298-304.
                 suspensions of carbon nanotubes (CNT nanofluids)[J]. International   [69]  CAMPO M A, WOO L Y, MASON T O, et al. Frequency-dependent
                 Journal of Heat and Mass Transfer, 2006, 49(1/2): 240-250.   electrical  mixing  law  behavior  in  spherical  particle  composites[J].
            [63]  DING J W, YAN X H, CAO J X, et al. Curvature and strain effects   Journal of Electroceramics, 2002, 9(1): 49-56.
                 on electronic properties of single-wall carbon nanotubes[J]. Journal   [70]  JAKUBINEK  M  B,  WHITE  M  A,  MU  M,  et al.  Temperature
                 of Physics: Condensed Matter, 2003, 15(27): 439-445.   dependence  of  thermal  conductivity  enhancement  in  single-walled
            [64]  REN  C,  ZHANG  W,  XU  Z,  et al.  Thermal  conductivity  of   carbon nanotube/polystyrene composites[J]. Applied Physics Letters,
                 single-walled  carbon  nanotubes  under  axial  stress[J].  Journal  of   2010, 96(8): 083105.
   35   36   37   38   39   40   41   42   43   44   45