Page 40 - 《精细化工》2020年第6期
P. 40
·1106· 精细化工 FINE CHEMICALS 第 37 卷
Analysis and Calorimetry, 2019, 135(4): 2159-2169. [74] XIE Y, LIU W, LIU C, et al. Investigation of covalently grafted
[64] MURARIU M, PAINT Y, MURARIU O, et al. Current progress in polyacrylate chains onto graphene oxide for epoxy composites with
the production of PLA-ZnO nanocomposites: Beneficial effects of reinforced mechanical performance[J]. Journal of Applied Polymer
chain extender addition on key properties[J]. Journal of Applied Science, 2019, 136(32): 47842.
Polymer Science, 2015, 132(48): 42480-42490. [75] JIANG X, ZHAI S, JIANG X, et al. Synthesis of PAA-g-PNIPAM
[65] ROMO-URIBE A. Dynamics and viscoelastic behavior of waterborne well-defined graft polymer by sequential RAFT and SET-LRP and its
acrylic polymer/silica nanocomposite coatings[J]. Progress in Organic application in preparing size-controlled super-paramagnetic Fe 3O 4
Coatings, 2019, 129: 125-132. nanoparticles as a stabilizer[J]. Polymer, 2014, 55(16): 3703-3712.
[66] LI X, WANG S, XIE J, et al. Polyurethane acrylate-supported [76] PODDAR M K, SHARMA S, PATTIPAKA S, et al. Ultrasound-
rGO/TiO 2 electrical conductive and antibacterial nanocomposites[J]. assisted synthesis of poly (MMA-co-BA)/ZnO nanocomposites with
International Journal of Polymeric Materials and Polymeric enhanced physical properties[J]. Ultrasonics Sonochemistry, 2017,
Biomaterials, 2019, 68(6): 319-327. 39: 782-791.
[67] CHENG P S, ZENG K M, CHEN J H. Preparation and [77] CHEN G, WU L, XU J, et al.Novel preparation method and the
characterization of transparent and UV-shielding epoxy/SR-494/ characterization of polyurethane-acrylate/nano-SiO 2 emulsions[J].
APTMS/ZnO nanocomposites with high heat resistance and anti- Science and Engineering of Composite Materials, 2018, 25(3): 603-610.
static properties[J]. Journal of the Chinese Chemical Society, 2014, [78] SHABAN M, POOSTFOROOSHAN J, WEBER A P. Surface-
61(3): 320-328. initiated polymerization on unmodified inorganic semiconductor
[68] LIU J, MA J, BAO Y, et al. Nanoparticle morphology and film- nanoparticles via surfactant-free aerosol-based synthesis toward
forming behavior of polyacrylate/ZnO nanocomposite[J]. Composites core-shell nanohybrids with a tunable shell thickness[J]. Journal of
Science and Technology, 2014, 98: 64-71. Materials Chemistry A, 2017, 5(35): 18651-18663.
[69] POORMOHAMMADIAN S J, DARVISHI P, DEZFULI A M G, et [79] LIAO W, GU A, LIANG G, et al. New high performance transparent
al. Incorporation of functionalized silica nanoparticles into polymeric UV-curable poly (methyl methacrylate) grafted ZnO/silicone-acrylate
films for enhancement of water absorption and water vapor resin composites with simultaneously improved integrated
transition[J]. Fibers and Polymers, 2018, 19(10): 2066-2079. performance[J]. Colloids and Surfaces A: Physicochemical and
[70] PROVOST M, RAULIN K, MAINDRON T, et al. Influence of silane Engineering Aspects, 2012, 396: 74-82.
coupling agent on the properties of UV curable SiO 2-PMMA hybrid [80] LÜ N, LÜ X, JIN X, et al. Preparation and characterization of
nanocomposite[J]. Journal of Sol-Gel Science and Technology, 2019, UV-curable ZnO/polymer nanocomposite films[J]. Polymer International,
89(3): 796-806. 2007, 56(1): 138-143.
[71] ZHENG C F, YANG Z F, LV C C, et al. Thermal stability and [81] LI J, YIN Y, MUHAMMAD Y, et al. Preparation and properties of
abrasion resistance of polyacrylate/nano-silica hybrid coatings[J]. modified graphene oxide incorporated waterborne polyurethane
Iranian Polymer Journal, 2013, 22(7): 465-471. acrylate[J]. Polymer International, 2019, 68(6): 1091-1101.
[72] GANGULY S, BHAWAL P, CHOUDHURY A, et al. Preparation and [82] WANG D, LIU H, YANG J, et al. Seawater-induced healable
properties of halloysite nanotubes/poly (ethylene methyl acrylate)- underwater superoleophobic antifouling coatings[J]. ACS Applied
based nanocomposites by variation of mixing methods[J]. Polymer- Materials & Interfaces, 2018, 11(1): 1353-1362.
Plastics Technology and Engineering, 2018, 57(10): 997-1014. [83] FU Y, CUI J, HUANG Q, et al. Click-based transparent durable films
[73] YANG F, NELSON G L. Polymer/silica nanocomposites prepared derived from tetrabrachius PDMS-bridged epoxy acrylates and
via extrusion[J]. Polymers for advanced technologies, 2006, 17(4): surface modified nanosilica particles[J]. Progress in Organic Coatings,
320-326. 2018, 117: 166-173.
(上接第 1087 页) Physical Chemistry C, 2010, 114(13): 5786-5791.
[65] BAGCHI A, NOMURA S. On the effective thermal conductivity of
[58] MORTAZAVI B, BARDON J, AHZI S. Interphase effect on the
carbon nanotube reinforced polymer composites[J]. Composites
elastic and thermal conductivity response of polymer nanocomposite Science and Technology, 2006, 66(11/12): 1703-1712.
materials: 3D finite element study[J]. Computational Materials [66] HAN Z, FINA A. Thermal conductivity of carbon nanotubes and
Science, 2013, 69(1): 100-106. their polymer nanocomposites: A review[J]. Progress in Polymer
[59] BEHABTU N, YOUNG C C, TSENTALOVICH D E, et al. Strong,
light, multifunctional fibers of carbon nanotubes with ultrahigh Science, 2011, 36(7): 914-944.
conductivity[J]. Science, 2013, 339(6116): 182-186. [67] GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Evaluation
[60] YANG F, DAMES C. Mean free path spectra as a tool to understand and identification of electrical and thermal conduction mechanisms
in carbon nanotube/epoxy composites[J]. Polymer, 2006, 47(6):
thermal conductivity in bulk and nanostructures[J]. Physical Review
2036-2045.
B, 2013, 87(3): 035437.
[68] CHU K, WU Q Y, JIA C C, et al. Fabrication and effective thermal
[61] YU J K, MITROVIC S, THAM D, et al. Reduction of thermal
conductivity of multi-walled carbon nanotubes reinforced Cu matrix
conductivity in phononic nanomesh structures[J]. Nature
Nanotechnology, 2010, 5(10): 718-721. composites for heat sink applications[J]. Composites Science and
[62] DING Y, ALIAS H, WEN D, et al. Heat transfer of aqueous Technology, 2010, 70(2): 298-304.
suspensions of carbon nanotubes (CNT nanofluids)[J]. International [69] CAMPO M A, WOO L Y, MASON T O, et al. Frequency-dependent
Journal of Heat and Mass Transfer, 2006, 49(1/2): 240-250. electrical mixing law behavior in spherical particle composites[J].
[63] DING J W, YAN X H, CAO J X, et al. Curvature and strain effects Journal of Electroceramics, 2002, 9(1): 49-56.
on electronic properties of single-wall carbon nanotubes[J]. Journal [70] JAKUBINEK M B, WHITE M A, MU M, et al. Temperature
of Physics: Condensed Matter, 2003, 15(27): 439-445. dependence of thermal conductivity enhancement in single-walled
[64] REN C, ZHANG W, XU Z, et al. Thermal conductivity of carbon nanotube/polystyrene composites[J]. Applied Physics Letters,
single-walled carbon nanotubes under axial stress[J]. Journal of 2010, 96(8): 083105.