Page 230 - 《精细化工》2020年第7期
P. 230
·1512· 精细化工 FINE CHEMICALS 第 37 卷
versatile oxidant in organic-synthesis[J]. Bulletin of the Chemical anilines with heterogeneous sulfonic acid catalysts[J]. Green Chemistry,
Society of Japan, 1983, 56(3): 914-917. 2018, 20(2): 382-386.
[19] LIM Y K, LEE K S, CHO C G. Novel route to azobenzenes via [30] HUDWEKAR A D, VERMA P K, KOUR J, et al. Transition
Pd-catalyzed coupling reactions of aryl hydrazides with aryl halides, metal-free oxidative coupling of primary amines in polyethylene
followed by direct oxidations[J]. Organic Letters, 2003, 5(7): 979-982. glycol at room temperature: Synthesis of imines, azobenzenes,
[20] LU W C, XI C J. CuCl-catalyzed aerobic oxidative reaction of benzothiazoles, and disulfides[J]. European Journal of Organic
primary aromatic amines[J]. Tetrahedron Lett, 2008, 49(25): 4011-4015. Chemistry, 2019, 2019(6): 1242-1250.
[21] GRIRRANE A, CORMA A, GARCIA H. Gold-catalyzed synthesis [31] FAGNONI M, DONDI D, RAVELLI D, et al. Photocatalysis for the
of aromatic azo compounds from anilines and nitroaromatics[J]. formation of the C-C bond[J]. Chemical Reviews, 2007, 107(6):
Science, 2008, 322(5908): 1661-1664. 2725-2756.
[22] ZHANG C, JIAO N. Copper-catalyzed aerobic oxidative dehydrogenative [32] YOON T P, ISCHAY M A, DU J. Visible light photocatalysis as a
coupling of anilines leading to aromatic azo compounds using greener approach to photochemical synthesis[J]. Nature Chemistry,
dioxygen as an oxidant[J]. Angewandte Chemie International Edition, 2010, 2(7): 527-532.
2010, 49(35): 6174-6177. [33] XUAN J, XIAO W J. Visible-light photoredox catalysis[J].
[23] TAKEDA Y, OKUMURA S, MINAKATA S. Oxidative dimerization Angewandte Chemie International Edition, 2012, 51(28): 6828-6838.
of aromatic amines using tBuOI: Entry to unsymmetric aromatic azo [34] PRIER C K, RANKIC D A, MACMILLAN D W. Visible light
compounds[J]. Angew Chem Int Ed Engl, 2012, 51(31): 7804-7808. photoredox catalysis with transition metal complexes: Applications in
[24] MA H C, LI W F, WANG J, et al. Organocatalytic oxidative organic synthesis[J]. Chemical Reviews, 2013, 113(7): 5322-5363.
dehydrogenation of aromatic amines for the preparation of azobenzenes [35] SETH K, ROY S R, KUMAR A, et al. The palladium and copper
under mild conditions[J]. Tetrahedron, 2012, 68(39): 8358-8366. contrast: A twist to products of different chemotypes and altered
[25] MONIR K, GHOSH M, MISHRA S, et al. Phenyliodine(Ⅲ) diacetate mechanistic pathways[J]. Catalysis Science & Technology, 2016,
(PIDA) mediated synthesis of aromatic azo compounds through oxidative 6(9): 2892-2896.
dehydrogenative coupling of anilines: Scope and mechanism[J]. [36] FORBER C L, KELUSKY E C, BUNCE N J, et al. Electronic-
European Journal of Organic Chemistry, 2014, 2014(5): 1096-1102. spectra of cis-azobenzenes and trans-azobenzenes-consequences of
[26] ZHU Y G, SHI Y. Facile Cu(Ⅰ)-catalyzed oxidative coupling of ortho substitution[J]. Journal of the American Chemical Society,
anilines to azo compounds and hydrazines with diaziridinone under 1985, 107(21): 5884-5890.
mild conditions[J]. Organic Letters, 2013, 15(8): 1942-1945. [37] LI J X, ZHOU H, ZHANG J L, et al. AgNO 3 as nitrogen source for
[27] GEORGIÁDES Á, ÖTVÖS S B, FÜLÖP F. Exploring new parameter rhodium(iii)-catalyzed synthesis of 2-aryl-2H-benzotriazoles from
spaces for the oxidative homocoupling of aniline derivatives: azobenzenes[J]. Chemical Communications, 2016, 52(61): 9589-9592.
Sustainable synthesis of azobenzenes in a flow system[J]. ACS [38] YAMAMURA M, KANO N, KAWASHIMA T, et al. Crucial role of
Sustainable Chemistry & Engineering, 2015, 3(12): 3388-3397. N center dot center dot center dot Si interactions in the solid-state
[28] DUTTA B, BISWAS S, SHARMA V, et al. Mesoporous manganese coloration of disilylazobenzenes[J]. Journal of Organic Chemistry,
oxidecatalyzed aerobic oxidative coupling of anilines to aromatic azo 2008, 73(21): 8244-8249.
compounds[J]. Angewandte Chemie International Edition, 2016, [39] NGUYEN T H, GIGANT N, DELARUE-COCHIN S, et al.
55(6): 2171-2175. Palladium-catalyzed oxidative synthesis of unsymmetrical Azophenols[J].
[29] PARIS E, BIGI F, CAUZZI D, et al. Oxidative dimerization of Journal of Organic Chemistry, 2016, 81(5): 1850-1857.
(上接第 1506 页) [23] WANG S S (王姗姗), REN A L (任爱玲), WANG N (王宁), et al.
Effect of seed aerosol on the formation of secondary organic aerosols
[16] KRAMP F, PAULSON S E. The gas phase reaction of ozone with 1, by 1, 3-butadiene ozone oxidation[J]. Coal and Chemical Industry
3-butadiene: Formation yields of some toxic products[J]. (煤炭与化工), 2017, 40(8): 30-36.
Atmospheric Environment, 2000, 34(1): 35-43. [24] LIU X M, ZHANG Q, ITO S, et al. Oxidation characteristics and
[17] GHOSH B, BUGARIN A, CONNELL B T, et al. OH radical products of five ethers at low temperature[J]. Fuel, 2016, 165: 513-525.
initiated oxidation of 1, 3-butadiene: Isomeric selective study of the [25] LI Y L, LIU X M, ZHANG Q, et al. Characteristics and kinetics of
dominant addition channel[J]. The Journal of Physical Chemistry A, rosin pentaerythritol ester via oxidation process under ultraviolet
2010, 114(16): 5299-5305. irradiation[J]. Molecules (Basel, Switzerland), 2018, 23(11): 1-12.
[18] SONG H L (宋焕玲), CHEN G X (陈革新), LUO S W (罗淑文), et [26] JIAO X Y (矫馨瑶), LI E H (李恩惠), WANG Y H (王月华), et al.
al. Kinetic study on butadiene epoxidation over Ba, Cs and Cl Studies on the stability and thermal degradation kinetics of blueberry
promoted Ag/Al 2O 3 catalyst[J]. Journal of Molecular Catalysis (分子 polyphenols[J]. Journal of Chinese Institute of Food Science and
催化), 2007, 21(1): 1-7. Technology (中国食品学报), 2018, 18(1): 81-87.
[19] LÜ X (吕鑫), HU E J (胡二江), LI X J (李晓杰), et al. The research [27] MERCAL G D, JAESECHK E D P, TESSARO I C, et al.
of 1, 3-butadiene in laminar flames at elevated temperatures and Degradation kinetics of anthocyanins in acerola pulp: Comparison
pressures[J]. Journal of Engineering Thermophysics (工程热物理学 between ohmic and conventional heat treatment[J]. Food Chemistry,
报), 2019, 40(8): 1942-1947. 2013, 136(2): 853-857.
[20] ZHOU C W, YANG L, ULTAN B, et al. An experimental and [28] PETORU A L, TERZIDAKI A. Calcium carbonate and calcium
chemical kinetic modeling study of 1, 3-butadiene combustion: sulfate precipitation, crystallization and dissolution: Evidence for the
Ignition delay time and laminar flame speed measurements[J]. activated steps and the mechanisms from the enthalpy and entropy of
Combustion and Flame, 2018, 197: 423-438. activation values[J]. Chemical Geology, 2014, 381: 144-153.
[21] ZHAO H, ZHANG Z H, REZGUI Y, et al. Studies of high pressure [29] VIKRAM V B, RAMESH M N, PRAPULLA S G. Thermal
1, 3-butadiene flame speeds and high temperature kinetics using degradation kinetics of nutrients in orange juice heated by
hydrogen and oxygen sensitization[J]. Combustion and Flame, 2019, electromagnetic and conventional methods[J]. Journal of Food
200: 135-141. Engineering, 2005, 69(1): 31-40.
[22] SONG H (宋辉), WANG X Y (王秀岩), YANG X M (杨学明). [30] ZHANG W Y (张闻扬), LIU X M (刘雄民), ZHANG Q (张强), et
Theoretical studies on the dynamics of the fluorine atom reaction al. Oxidation characteristics and products of trans-anethole with
with trans-1, 3-butadiene[J]. Chinese Journal of Chemical Physics, oxygen at low temperature[J]. Fine Chemicals (精细化工), 2018,
2009, 19(4): 281-285. 35(8): 1363-1369.