Page 230 - 《精细化工》2020年第7期
P. 230

·1512·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 versatile  oxidant  in  organic-synthesis[J].  Bulletin  of  the  Chemical   anilines with heterogeneous sulfonic acid catalysts[J]. Green Chemistry,
                 Society of Japan, 1983, 56(3): 914-917.           2018, 20(2): 382-386.
            [19]  LIM  Y  K,  LEE  K  S,  CHO  C  G.  Novel  route  to  azobenzenes  via   [30]  HUDWEKAR  A  D,  VERMA  P  K,  KOUR  J,  et al.  Transition
                 Pd-catalyzed coupling reactions of aryl hydrazides with aryl halides,   metal-free  oxidative  coupling  of  primary  amines  in  polyethylene
                 followed by direct oxidations[J]. Organic Letters, 2003, 5(7): 979-982.   glycol  at  room  temperature:  Synthesis  of  imines,  azobenzenes,
            [20]  LU  W  C,  XI  C  J.  CuCl-catalyzed  aerobic  oxidative  reaction  of   benzothiazoles,  and  disulfides[J].  European  Journal  of  Organic
                 primary aromatic amines[J]. Tetrahedron Lett, 2008, 49(25): 4011-4015.   Chemistry, 2019, 2019(6): 1242-1250.
            [21]  GRIRRANE A, CORMA A, GARCIA H. Gold-catalyzed synthesis   [31]  FAGNONI M, DONDI D, RAVELLI D, et al. Photocatalysis for the
                 of  aromatic  azo  compounds  from  anilines  and  nitroaromatics[J].   formation  of  the  C-C  bond[J].  Chemical  Reviews,  2007,  107(6):
                 Science, 2008, 322(5908): 1661-1664.              2725-2756.
            [22]  ZHANG C, JIAO N. Copper-catalyzed aerobic oxidative dehydrogenative   [32]  YOON T P, ISCHAY M A, DU J. Visible light photocatalysis as a
                 coupling  of  anilines  leading  to  aromatic  azo  compounds  using   greener  approach  to  photochemical  synthesis[J].  Nature  Chemistry,
                 dioxygen  as  an  oxidant[J].  Angewandte  Chemie  International  Edition,   2010, 2(7): 527-532.
                 2010, 49(35): 6174-6177.                      [33]  XUAN  J,  XIAO  W  J.  Visible-light  photoredox  catalysis[J].
            [23]  TAKEDA Y, OKUMURA S, MINAKATA S. Oxidative dimerization   Angewandte Chemie International Edition, 2012, 51(28): 6828-6838.
                 of aromatic amines using tBuOI: Entry to unsymmetric aromatic azo   [34]  PRIER C K,  RANKIC D A,  MACMILLAN  D  W.  Visible light
                 compounds[J]. Angew Chem Int Ed Engl, 2012, 51(31): 7804-7808.   photoredox catalysis with transition metal complexes: Applications in
            [24]  MA  H  C,  LI  W  F,  WANG  J,  et al.  Organocatalytic  oxidative   organic synthesis[J]. Chemical Reviews, 2013, 113(7): 5322-5363.
                 dehydrogenation of aromatic amines for the preparation of azobenzenes   [35]  SETH K, ROY S  R, KUMAR  A,  et al. The palladium  and copper
                 under mild conditions[J]. Tetrahedron, 2012, 68(39): 8358-8366.   contrast:  A  twist  to  products  of  different  chemotypes  and  altered
            [25]  MONIR K, GHOSH M, MISHRA S, et al. Phenyliodine(Ⅲ) diacetate   mechanistic  pathways[J].  Catalysis  Science  &  Technology,  2016,
                 (PIDA) mediated synthesis of aromatic azo compounds through oxidative   6(9): 2892-2896.
                 dehydrogenative  coupling  of  anilines:  Scope  and  mechanism[J].   [36]  FORBER  C  L,  KELUSKY  E  C,  BUNCE  N  J,  et al.  Electronic-
                 European Journal of Organic Chemistry, 2014, 2014(5): 1096-1102.   spectra  of  cis-azobenzenes  and  trans-azobenzenes-consequences  of
            [26]  ZHU  Y  G,  SHI  Y.  Facile  Cu(Ⅰ)-catalyzed  oxidative  coupling  of   ortho  substitution[J].  Journal  of  the  American  Chemical  Society,
                 anilines to azo compounds and hydrazines with diaziridinone under   1985, 107(21): 5884-5890.
                 mild conditions[J]. Organic Letters, 2013, 15(8): 1942-1945.   [37]  LI J X, ZHOU H, ZHANG J L, et al. AgNO 3 as nitrogen source for
            [27]  GEORGIÁDES Á, ÖTVÖS S B, FÜLÖP F. Exploring new parameter   rhodium(iii)-catalyzed  synthesis  of  2-aryl-2H-benzotriazoles  from
                 spaces  for  the  oxidative  homocoupling  of  aniline  derivatives:   azobenzenes[J]. Chemical Communications, 2016, 52(61): 9589-9592.
                 Sustainable  synthesis  of  azobenzenes  in  a  flow  system[J].  ACS   [38]  YAMAMURA M, KANO N, KAWASHIMA T, et al. Crucial role of
                 Sustainable Chemistry & Engineering, 2015, 3(12): 3388-3397.   N  center  dot  center  dot  center  dot  Si  interactions  in  the  solid-state
            [28]  DUTTA B, BISWAS S, SHARMA V, et al. Mesoporous manganese   coloration  of  disilylazobenzenes[J].  Journal  of  Organic  Chemistry,
                 oxidecatalyzed aerobic oxidative coupling of anilines to aromatic azo   2008, 73(21): 8244-8249.
                 compounds[J].  Angewandte  Chemie  International  Edition,  2016,   [39]  NGUYEN  T  H,  GIGANT  N,  DELARUE-COCHIN  S,  et al.
                 55(6): 2171-2175.                                 Palladium-catalyzed oxidative synthesis of unsymmetrical Azophenols[J].
            [29]  PARIS E,  BIGI F,  CAUZZI D,  et al.  Oxidative  dimerization  of   Journal of Organic Chemistry, 2016, 81(5): 1850-1857.


            (上接第 1506 页)                                       [23]  WANG S S (王姗姗), REN A L (任爱玲), WANG N (王宁), et al.
                                                                   Effect of seed aerosol on the formation of secondary organic aerosols
            [16]  KRAMP F, PAULSON S E. The gas phase reaction of ozone with 1,   by  1,  3-butadiene  ozone  oxidation[J].  Coal  and  Chemical  Industry
                 3-butadiene:  Formation  yields  of  some  toxic  products[J].   (煤炭与化工), 2017, 40(8): 30-36.
                 Atmospheric Environment, 2000, 34(1): 35-43.     [24]  LIU  X  M,  ZHANG  Q,  ITO  S,  et al.  Oxidation  characteristics  and
            [17]  GHOSH  B,  BUGARIN  A,  CONNELL  B  T,  et al.  OH  radical   products of five ethers at low temperature[J]. Fuel, 2016, 165: 513-525.
                 initiated oxidation of 1, 3-butadiene: Isomeric selective study of the   [25]  LI Y L, LIU X M, ZHANG Q, et al. Characteristics and kinetics of
                 dominant addition channel[J]. The Journal of Physical Chemistry A,   rosin  pentaerythritol  ester  via  oxidation  process  under  ultraviolet
                 2010, 114(16): 5299-5305.                         irradiation[J]. Molecules (Basel, Switzerland), 2018, 23(11): 1-12.
            [18]  SONG H L (宋焕玲), CHEN G X (陈革新), LUO S W (罗淑文), et   [26]  JIAO X Y (矫馨瑶), LI E H (李恩惠), WANG Y H (王月华), et al.
                 al.  Kinetic  study  on  butadiene  epoxidation  over  Ba,  Cs  and  Cl   Studies on the stability and thermal degradation kinetics of blueberry
                 promoted Ag/Al 2O 3 catalyst[J]. Journal of Molecular Catalysis (分子  polyphenols[J].  Journal  of  Chinese  Institute  of  Food  Science  and
                 催化), 2007, 21(1): 1-7.                            Technology (中国食品学报), 2018, 18(1): 81-87.
            [19]  LÜ X (吕鑫), HU E J (胡二江), LI X J (李晓杰), et al. The research   [27]  MERCAL  G  D,  JAESECHK  E  D  P,  TESSARO  I  C,  et al.
                 of  1,  3-butadiene  in  laminar  flames  at  elevated  temperatures  and   Degradation  kinetics  of  anthocyanins  in  acerola  pulp:  Comparison
                 pressures[J]. Journal of Engineering Thermophysics (工程热物理学  between ohmic and conventional heat treatment[J]. Food Chemistry,
                 报), 2019, 40(8): 1942-1947.                       2013, 136(2): 853-857.
            [20]  ZHOU  C  W,  YANG  L,  ULTAN  B,  et al.  An  experimental  and   [28]  PETORU  A  L,  TERZIDAKI  A.  Calcium  carbonate  and  calcium
                 chemical  kinetic  modeling  study  of  1,  3-butadiene  combustion:   sulfate precipitation, crystallization and dissolution: Evidence for the
                 Ignition  delay  time  and  laminar  flame  speed  measurements[J].   activated steps and the mechanisms from the enthalpy and entropy of
                 Combustion and Flame, 2018, 197: 423-438.         activation values[J]. Chemical Geology, 2014, 381: 144-153.
            [21]  ZHAO H, ZHANG Z H, REZGUI Y, et al. Studies of high pressure   [29]  VIKRAM  V  B,  RAMESH  M  N,  PRAPULLA  S  G.  Thermal
                 1,  3-butadiene  flame  speeds  and  high  temperature  kinetics  using   degradation  kinetics  of  nutrients  in  orange  juice  heated  by
                 hydrogen and oxygen sensitization[J]. Combustion and Flame, 2019,   electromagnetic  and  conventional  methods[J].  Journal  of  Food
                 200: 135-141.                                     Engineering, 2005, 69(1): 31-40.
            [22]  SONG  H  (宋辉),  WANG  X  Y  (王秀岩),  YANG  X  M  (杨学明).   [30]  ZHANG W Y (张闻扬), LIU X M (刘雄民), ZHANG Q (张强), et
                 Theoretical  studies  on  the  dynamics  of  the  fluorine  atom  reaction   al.  Oxidation  characteristics  and  products  of  trans-anethole  with
                 with trans-1,  3-butadiene[J].  Chinese  Journal  of  Chemical  Physics,   oxygen  at  low  temperature[J].  Fine  Chemicals  (精细化工),  2018,
                 2009, 19(4): 281-285.                             35(8): 1363-1369.
   225   226   227   228   229   230   231   232   233   234   235