Page 23 - 《精细化工》2020年第9期
P. 23
第 9 期 刘远峰,等: 微生物燃料电池中阳极产电菌的研究进展 ·1737·
[27] CREASEY R C G, MOSTERT A B, NGUYEN T A H, et al. MR-1 biofilm formation of a microbial electrochemical system via
Microbial nanowires electron transport and the role of synthetic differential pulse voltammetry[J]. Bioresource Technology, 2018,
analogues[J]. Acta Biomaterialia, 2018, 69: 1-30. 254: 357-361.
[28] WEGENER G, KRUKENBERG V, RIEDEL D, et al. Intercellular [45] LIU R, TURSUN H, HOU X, et al. Microbial community dynamics
wiring enables electron transfer between methanotrophic archaea and in a pilot-scale MFC-AA/O system treating domestic sewage[J].
bacteria[J]. Nature, 2015, 526(7574): 587-590. Bioresource Technology, 2017, 241: 439-447.
[29] LUO J M, YANG J, HE H H, et al. A new electrochemically active [46] CHEN J F, HU Y Y, ZHANG L H, et al. Bacterial community shift
bacterium phylogenetically related to Tolumonas osonensis and and improved performance induced by in situ preparing dual
power performance in MFCs[J]. Bioresource Technology, 2013, 139: graphene modified bioelectrode in microbial fuel cell[J]. Bioresource
141-148. Technology, 2017, 238: 273-280.
[30] MAO L F, VERWOERD W S. Selection of organisms for systems [47] DANG T N, KOZO T. Enhancing the performance of E. coli-
biology study of microbial electricity generation: A review[J]. powered MFCs by using porous 3D anodes based on coconut
International Journal of Energy and Environmental Engineering, activated carbon[J]. Biochemical Engineering Journal, 2019, 151:
2013, 4(1): 17-34. 107357-107361.
[31] FAN P (范平), ZHI Y F (支银芳), WU X Y (吴夏芫), et al. Research [48] CHEN L, ZHANG P, SHANG W T, et al. Enrichment culture of
progress in electrogenic microorganisms for microbial fuel cells[J]. electroactive microorganisms with high magnetic susceptibility
Bulletin of Biological (生物学通报), 2011, 46(10): 6-9. enhances the performance of microbial fuel cells[J].
[32] LI X, ZHONG G Z, QIAO Y, et al. A high performance xylose Bioelectrochemistry, 2018, 121: 65-73.
microbial fuel cell enabled by Ochrobactrum sp. 575 cells[J]. RSC [49] LIU X, ZHAO X H, YU Y Y, et al. Facile fabrication of conductive
Advances, 2014, 4(75): 39839-39843. polyaniline nanoflower modified electrode and its application for
[33] SHAO W (邵伟), LE C Y (乐超银), XIONG Z (熊泽), et al. Study microbial energy harvesting[J]. Electrochimica Acta, 2017, 255:
on fermentation kinetics for bacterial cellulose production by 41-47.
acetobacter pasteurianus[J]. China Brewing (中国酿造), 2005, [50] SONAWANE J M, Al-SAADI S, SINGH R R K, et al. Exploring the
24(10): 26-29. use of polyaniline-modified stainless steel plates as low-cost,
[34] WANG Yan (王艳), LI D P (李大平), WANG X M (王晓梅), et al. A high-performance anodes for microbial fuel cells[J]. Electrochimica
preliminary study on the characteristics of a strain of high Acta, 2018, 268: 484-493.
temperature and high salt resistant Nitrosomonas[J].Acta [51] RIKAME S S, MUNGRAY A A, MUNGRAY A K. Modification of
Microbiologica Sinica (微生物学报), 2003, 43(1): 94-98. anode electrode in microbial fuel cell for electrochemical recovery of
[35] DENG L F (邓丽芳), LI F B (李芳柏), ZHOU S G (周顺桂), et al. A energy and copper metal[J]. Electrochimica Acta, 2018, 275: 8-17.
study of electron-shuttle mechanism in Klebsiella pneumoniae [52] ZHOU S W, LIN M, ZHUANG Z C, et al. Biosynthetic graphene
based-microbial fuel cells[J]. Chinese Science Bulletin (科学通报), enhanced extracellular electron transfer for high performance anode
2009, 54(19): 2983-2987. in microbial fuel cell[J]. Chemosphere, 2019, 232(10): 396-402.
[36] YI H, NEVIN K P, KIM B C, et al. Selection of a variant of [53] ZHANG L J, HE W H, YANG J C, et al. Bread-derived 3D
Geobacter sulfurreducens with enhanced capacity for current production macroporous carbon foams as high performance free-standing anode
in microbial fuel cells[J]. Biosensors & Bioelectronics, 2009, 24(12): in microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 122:
3498-3503. 217-223.
[37] WU Y D (伍元东), LYU Q C (吕乾川), JIA H H (贾红华), et al. [54] HASSAN H, JIN B, DAI S, et al. Chemical impact of catholytes on
Synchronous degradation of landfill leachate and electricity bacillus subtilis-catalysed microbial fuel cell performance for
production by microbial fuel cell[J]. Journal of Nanjing University of degrading 2,4-dichlorophenol[J]. Chemical Engineering Journal,
Technology (南京工业大学学报), 2017, 39(4): 37-42, 47. 2016, 301: 103-114.
[38] HOLMES D E, NICOLL J S, BOND D R, et al. Potential role of a [55] HASSAN H, JIN B, DONNER E, et al. Microbial community and
novel psychrotolerant member of the family geobacteraceae, bioelectrochemical activities in MFC for degrading phenol and
geopsychrobacter electrodiphilus gen. nov. sp. nov. in electricity producing electricity: Microbial consortia could make differences[J].
production by a marine sediment fuel cell[J]. Applied & Chemical Engineering Journal, 2018, 332: 647-657.
Environmental Microbiology, 2004, 70(10): 6023-6030. [56] LIU J, QIAO Y, LU Z S, et al. Enhance electron transfer and
[39] FEDOROVICH V, KNIGHTON M C, PAGALING E, et al. Novel performance of microbial fuel cells by perforating the cell
electrochemically active bacterium phylogenetically related to membrane[J]. Electrochemistry Communications, 2012, 15(1): 50-53.
arcobacter butzleri, isolated from a microbial fuel cell[J]. Applied & [57] XU Y S, ZHENG T, YONG X Y, et al. Trace heavy metal ions
Environmental Microbiology, 2009, 75(23): 7326-7334. promoted extracellular electron transfer and power generation by
[40] DAI F (代凤), LIU J (刘建), SUN X (孙霞), et al. The glucose Shewanella in microbial fuel cells[J]. Bioresource Technology, 2016,
metabolism variation of clostridium butyricum during domestication 211: 542-547.
with different anode potentials[J]. Journal of Sichuan University (四 [58] YONG X Y, SHI D Y, CHEN Y L, et al. Enhancement of
川大学学报), 2017, 54(2): 185-190. bioelectricity generation by manipulation of the electron shuttles
[41] YIN Y (殷赟), LIU Y S (刘宜胜), WANG Y F (王一非), et al. synthesis pathway in microbial fuel cells[J]. Bioresource Technology,
Electricity generation and taming of electricigens from mediator-less 2014, 152: 220-224.
microbial fuel cell with saccharomyces cerevisiae[J]. ChineseJournal [59] ZHANG X L, FAN W, LI H, et al. Extending cycling life of
of Applied and Environmental Biology (应用与环境生物学报), lithium-oxygen batteries based on novel catalytic nanofiber
2010,16(3): 412-414. membrane and controllable screen-printed method[J]. Journal of
[42] YANG Z J (杨祖洁). Study on the electrogenic performance of Materials Chemistry A, 2018, 6: 21458-21467.
microbial fuel cell based on anaerobic oxidation of methane[D]. [60] ZHANG X L, FAN W, ZHAO S Y, et al. An efficient, bifunctional
Fuzhou: Fujian Agriculture and Forestry University (福建农林大学), catalyst for lithium-oxygen batteries obtained through tuning the
3+
2+
2019. exterior Co /Co ratio of CoO x on N-doped carbon nanofibers[J].
[43] DHAR B R, REN H, CHAE J, et al. Recoverability of electrical Catalysis Science & Technology, 2019, 9: 1998-2007.
conductivity of a geobacter-enriched biofilm[J]. Journal of Power [61] YU B, LI Y H, FENG L. Enhancing the performance of soil
Sources, 2018, 402: 198-202. microbial fuel cells by using a bentonite-Fe and Fe 3O 4 modified
[44] CHOI S, KIM B, CHANG I S. Tracking of Shewanella oneidensis, anode[J]. Journal of Hazardous Materials, 2019, 377: 70-77.