Page 23 - 《精细化工》2020年第9期
P. 23

第 9 期                      刘远峰,等:  微生物燃料电池中阳极产电菌的研究进展                                   ·1737·


            [27]  CREASEY R C G, MOSTERT  A B, NGUYEN T  A  H,  et al.   MR-1 biofilm formation of a  microbial electrochemical system  via
                 Microbial  nanowires electron transport and the role of synthetic   differential  pulse  voltammetry[J]. Bioresource Technology, 2018,
                 analogues[J]. Acta Biomaterialia, 2018, 69: 1-30.   254: 357-361.
            [28]  WEGENER  G,  KRUKENBERG V, RIEDEL D,  et al. Intercellular   [45]  LIU R, TURSUN H, HOU X, et al. Microbial community dynamics
                 wiring enables electron transfer between methanotrophic archaea and   in a pilot-scale MFC-AA/O system treating domestic sewage[J].
                 bacteria[J]. Nature, 2015, 526(7574): 587-590.    Bioresource Technology, 2017, 241: 439-447.
            [29]  LUO J M, YANG J, HE H H, et al. A new electrochemically active   [46]  CHEN J F, HU Y Y, ZHANG L H, et al. Bacterial community shift
                 bacterium phylogenetically related to  Tolumonas osonensis and   and improved  performance induced by in situ preparing  dual
                 power performance in MFCs[J]. Bioresource Technology, 2013, 139:   graphene modified bioelectrode in microbial fuel cell[J]. Bioresource
                 141-148.                                          Technology, 2017, 238: 273-280.
            [30]  MAO  L F, VERWOERD W S. Selection of organisms for systems   [47]  DANG  T N, KOZO  T.  Enhancing the performance of  E. coli-
                 biology study of  microbial electricity generation: A review[J].   powered MFCs by using  porous 3D anodes based on coconut
                 International Journal of Energy  and Environmental  Engineering,   activated carbon[J]. Biochemical Engineering  Journal, 2019, 151:
                 2013, 4(1): 17-34.                                107357-107361.
            [31]  FAN P (范平), ZHI Y F (支银芳), WU X Y (吴夏芫), et al. Research   [48]  CHEN L,  ZHANG P, SHANG W T,  et al. Enrichment  culture of
                 progress in electrogenic microorganisms for microbial fuel cells[J].   electroactive  microorganisms with  high magnetic susceptibility
                 Bulletin of Biological (生物学通报), 2011, 46(10): 6-9.     enhances  the  performance  of  microbial  fuel  cells[J].
            [32]  LI X, ZHONG  G  Z, QIAO Y,  et al. A high performance xylose   Bioelectrochemistry, 2018, 121: 65-73.
                 microbial fuel cell enabled by Ochrobactrum sp. 575 cells[J]. RSC   [49]  LIU X, ZHAO X H, YU Y Y, et al. Facile fabrication of conductive
                 Advances, 2014, 4(75): 39839-39843.               polyaniline nanoflower  modified electrode and  its application for
            [33]  SHAO W (邵伟), LE C Y (乐超银), XIONG Z (熊泽), et al. Study   microbial energy harvesting[J]. Electrochimica Acta, 2017, 255:
                 on  fermentation kinetics for  bacterial cellulose production  by   41-47.
                 acetobacter pasteurianus[J]. China Brewing (中国酿造), 2005,   [50]  SONAWANE J M, Al-SAADI S, SINGH R R K, et al. Exploring the
                 24(10): 26-29.                                    use of polyaniline-modified stainless steel plates as  low-cost,
            [34] WANG Yan (王艳), LI D P (李大平), WANG X M (王晓梅), et al. A   high-performance anodes for microbial fuel cells[J]. Electrochimica
                 preliminary study on the characteristics of a strain of high   Acta, 2018, 268: 484-493.
                 temperature  and  high  salt  resistant  Nitrosomonas[J].Acta   [51]  RIKAME S S, MUNGRAY A A, MUNGRAY A K. Modification of
                 Microbiologica Sinica (微生物学报), 2003, 43(1): 94-98.     anode electrode in microbial fuel cell for electrochemical recovery of
            [35]  DENG L F (邓丽芳), LI F B (李芳柏), ZHOU S G (周顺桂), et al. A   energy and copper metal[J]. Electrochimica Acta, 2018, 275: 8-17.
                 study of electron-shuttle mechanism in Klebsiella pneumoniae   [52]  ZHOU  S W,  LIN M,  ZHUANG Z C,  et al. Biosynthetic graphene
                 based-microbial fuel cells[J]. Chinese Science Bulletin (科学通报),   enhanced extracellular electron transfer for high performance anode
                 2009, 54(19): 2983-2987.                          in microbial fuel cell[J]. Chemosphere, 2019, 232(10): 396-402.
            [36]  YI  H,  NEVIN K P,  KIM B C,  et al. Selection of a variant of   [53]  ZHANG  L J, HE W H,  YANG J  C,  et al. Bread-derived  3D
                 Geobacter sulfurreducens with enhanced capacity for current production   macroporous carbon foams as high performance free-standing anode
                 in microbial fuel cells[J]. Biosensors & Bioelectronics, 2009, 24(12):  in microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 122:
                 3498-3503.                                        217-223.
            [37]  WU  Y D (伍元东),  LYU Q C (吕乾川), JIA H H (贾红华), et al.   [54]  HASSAN H, JIN B, DAI S, et al. Chemical impact of catholytes on
                 Synchronous degradation of landfill leachate  and electricity   bacillus subtilis-catalysed  microbial fuel cell performance for
                 production by microbial fuel cell[J]. Journal of Nanjing University of   degrading 2,4-dichlorophenol[J]. Chemical  Engineering Journal,
                 Technology (南京工业大学学报), 2017, 39(4): 37-42, 47.     2016, 301: 103-114.
            [38]  HOLMES D E, NICOLL J S, BOND D R, et al. Potential role of a   [55]  HASSAN H, JIN B, DONNER E, et al. Microbial community and
                 novel psychrotolerant member of the family  geobacteraceae,   bioelectrochemical activities in MFC for  degrading  phenol and
                 geopsychrobacter electrodiphilus  gen. nov. sp.  nov. in  electricity   producing electricity: Microbial consortia could make differences[J].
                 production  by a  marine sediment fuel cell[J]. Applied &   Chemical Engineering Journal, 2018, 332: 647-657.
                 Environmental Microbiology, 2004, 70(10): 6023-6030.   [56]  LIU J, QIAO  Y,  LU Z S,  et al. Enhance electron transfer and
            [39]  FEDOROVICH V, KNIGHTON M C, PAGALING E, et al. Novel   performance of  microbial fuel cells by perforating the  cell
                 electrochemically  active bacterium  phylogenetically related to   membrane[J]. Electrochemistry Communications, 2012, 15(1): 50-53.
                 arcobacter butzleri, isolated from a microbial fuel cell[J]. Applied &   [57]  XU  Y S,  ZHENG T,  YONG X Y,  et al. Trace heavy  metal ions
                 Environmental Microbiology, 2009, 75(23): 7326-7334.   promoted extracellular electron transfer and power generation  by
            [40]  DAI F (代凤), LIU J (刘建), SUN  X (孙霞),  et al. The glucose   Shewanella in microbial fuel cells[J]. Bioresource Technology, 2016,
                 metabolism variation of clostridium butyricum during domestication   211: 542-547.
                 with different anode potentials[J]. Journal of Sichuan University (四  [58]  YONG  X Y, SHI D Y,  CHEN Y L,  et al. Enhancement of
                 川大学学报), 2017, 54(2): 185-190.                     bioelectricity generation  by manipulation  of the electron shuttles
            [41]  YIN Y (殷赟), LIU Y S (刘宜胜), WANG Y  F  (王一非),  et al.   synthesis pathway in microbial fuel cells[J]. Bioresource Technology,
                 Electricity generation and taming of electricigens from mediator-less   2014, 152: 220-224.
                 microbial fuel cell with saccharomyces cerevisiae[J]. ChineseJournal   [59]  ZHANG  X L, FAN W, LI H,  et al. Extending cycling life of
                 of Applied and Environmental Biology (应用与环境生物学报),   lithium-oxygen batteries based on novel catalytic nanofiber
                 2010,16(3): 412-414.                              membrane and controllable screen-printed method[J]. Journal of
            [42]  YANG Z J (杨祖洁). Study on the electrogenic performance of   Materials Chemistry A, 2018, 6: 21458-21467.
                 microbial fuel cell based on anaerobic oxidation of methane[D].   [60]  ZHANG X L, FAN W, ZHAO S Y, et al. An efficient, bifunctional
                 Fuzhou: Fujian Agriculture and Forestry University (福建农林大学),   catalyst for lithium-oxygen batteries obtained through  tuning the
                                                                             3+
                                                                          2+
                 2019.                                             exterior Co /Co ratio of CoO x on  N-doped carbon nanofibers[J].
            [43]  DHAR  B R, REN H, CHAE J,  et al. Recoverability of electrical   Catalysis Science & Technology, 2019, 9: 1998-2007.
                 conductivity of a  geobacter-enriched biofilm[J]. Journal  of Power   [61]  YU B,  LI Y H,  FENG L. Enhancing the performance of soil
                 Sources, 2018, 402: 198-202.                      microbial fuel cells by using a bentonite-Fe and Fe 3O 4 modified
            [44]  CHOI S, KIM B, CHANG I S. Tracking of Shewanella oneidensis,   anode[J]. Journal of Hazardous Materials, 2019, 377: 70-77.
   18   19   20   21   22   23   24   25   26   27   28