Page 22 - 《精细化工》2020年第9期
P. 22

·1736·                            精细化工   FINE CHEMICALS                                 第 37 卷

            效的电极材料是提高 MFCs 产电性能的重要因素,                              using a  Pt microelectrode[J]. Bioelectrochemistry,  2016,  109:
                                                                   95-100.
            对电极材料进行改性可以提高电子传输的效率,同
                                                               [8]   BOND D R, LOVLEY D R. Evidence for involvement of an electron
            时避免了 Pt 贵金属的成本问题。                                      shuttle in electricity generation by Geothrix fermentans[J]. Applied
                 此外,膜材料是 MFCs 应用成本较高的影响因                           and Environmental Microbiology, 2005, 71(4): 2186-2189.
                                                               [9]   YANG T, ADHIKARI R  Y, MALVANKAR N S,  et al. The low
            素,降低膜的制作成本及氧通量是研究者需要解决                                 conductivity of Geobacter uraniireducens pili suggests a diversity of
            的问题,但目前还未发现可完全替代质子交换膜的                                 extracellular electron transfer mechanisms in the genus Geobacter[J].
                                                                   Frontiers in Microbiology, 2016, 7: 980-989.
            材料。                                                [10]  YOU L  X, LIU  L D, XIAO Y,  et al. Flavins mediate extracellular
                 对产电微生物的种类、应用及其影响因素进行                              electron transfer in Gram-positive  Bacillus  megaterium strain
                                                                   LLD-1[J]. Bioelectrochemistry, 2017, 119: 196-202.
            分析,可以充分了解产电微生物的发展历程及在
                                                               [11]  POTTER M C. Electrical effects accompanying the decomposition of
            MFCs 中的作用。高效产电微生物对促进 MFCs 技                            organic compounds[J].Proceeding of the Royal Society of London
            术的应用具有重要的影响,筛选一种高活性、产电                                 Series B,  Containing Papers of a  Biological Character, 1911,
                                                                   84(571): 260-276.
            性及电子可穿透生物膜的微生物是目前主要的任                              [12]  GALINA P, LARS H, LO G. Extracellular electron transfer features
            务。基于生物阴极在 MFCs 中应用的不断开发,且                              of gram-positive bacteria[J]. Analytica Chimica  Acta, 2019, 1076:
                                                                   32-37.
            阴极电子传递机制的研究远不如阳极,未来关于阴                             [13]  LOVLEY D  R, MALVANKAR N S. Seeing is believing: Novel
            极电子传递模式的探究也必将受到更广泛的关注。                                 imaging techniques help clarify microbial nanowire structure and
            随着测序技术的不断完善,有望在微生物电子传递                                 function[J]. Environmental Microbiology, 2015, 17(7): 2209-2215.
                                                               [14]  LIU X B, LIANG S, GU J D.  Microbial electrocatalysis: Redox
            机制方向发挥一定的作用。                                           mediators  responsible for extracellular electron transfer[J].
                 从微生物角度分析,可以从以下几方面进行探                              Biotechnology Advances, 2018, 36(7): 1815-1827.
                                                               [15]  SHI L, DONG  H L, REGUERA  G,  et al. Extracellular electron
            究:(1)随着分子生物学技术的发展,运用基因技                                transfer mechanisms between  microorganisms and minerals[J].
            术合成微生物来提高 MFCs 降解有机物同步产电的                              Nature Reviews Microbiology, 2016, 14: 651-662.
                                                               [16]  HOLMES D E, NEVIN K P, SNOEYENBOS-WEST  O L,  et al.
            性能是未来研究的重点,控制好微生物群落生长的
                                                                   Protozoan  grazing reduces the current output  of microbial fuel
            pH、温度和负荷率等变量,以期在 MFCs 运行过程                             cells[J]. Bioresource Technology, 2015, 193: 8-14.
            中获得最佳的产电效率;(2)进行 MFCs 堆叠的探                         [17]  MAZZOLDI F. Creating life through generative design[EB/OL].
                                                                   Tech Cruch, 2016. https://techcrunch.com/2016/07/08/creating-life-
            究,研究微生物的代谢路径,以提高输出电压;                                  through-generative-design/.
            (3)继续深化电子传递机制的研究,提高电子传递                            [18]  LIU Q,  YANG Y, MEI X  X,  et al. Response of the microbial
                                                                   community structure of biofilms to ferric iron in microbial fuel
            效率,筛选出更多的产电菌;(4)制备新型的电子                                cells[J]. Science of the Total Environment, 2018, 631/632: 695-701.
            传递中间体促进传递效率;(5)研究生物相容性材                            [19]  KUMAR R, SINGH L, ZULARISAM A W. Exoelectrogens: Recent
                                                                   advances in molecular drivers involved in extracellular electron
            料,用于筛选及保存产电微生物。
                                                                   transfer and strategies used to improve it for microbial fuel cell
                                                                   applications[J]. Renewable  and Sustainable Energy Reviews, 2016,
            参考文献:                                                  56: 1322-1336.
            [1]   CHEN S, PATIL S A, BROWN R K, et al. Strategies for optimizing   [20]  XIAO Y, WU S, ZHANG F, et al. Promoting electrogenic ability of
                 the power  output of microbial  fuel cells: Transitioning from   microbes with negative pressure[J]. Journal of Power Sources, 2013,
                 fundamental studies to practical implementation[J]. Applied Energy,   229: 79-83.
                 2019, 233/234: 15-28.                         [21]  IEROPOULOS I A, GREENMAN J, MELHUISH C, et al. Comparative
            [2]   NGUYEN D T, TAGUCHI K. A disposable water-activated   study of three types of microbial fuel cell[J]. Enzyme and Microbial
                 paper-based MFC using  dry  E. coli biofilm[J].  Biochemical   Technology, 2005, 37(2): 238-245.
                 Engineering Journal, 2019, 143: 161-168.      [22]  MOHAN S V, VELVIZHI G, MODESTRA J A, et al. Microbial fuel
            [3]   MASSAGLIA G, MARGARIA V, SACCO A, et al. N-doped carbon   cell: Critical factors regulating bio-catalyzed electrochemical process
                 nanofibers as catalyst layer at  cathode in single chamber microbial   and recent advancements[J]. Renewable and Sustainable Energy
                 fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(9):   Reviews, 2014, 40(12): 779-797.
                 4442-4449.                                    [23]  SCHRODER  U. Anodic electron transfer mechanisms in  microbial
            [4]   WANG X X, HU J P, CHEN Q. Synergic degradation  of   fuel cells and their energy efficiency[J]. Physical Chemistry Chemical
                 2,4,6-trichlorophenol in microbial fuel cells with intimately coupled   Physics, 2007, 9(21): 2619-2629.
                 photocatalytic-electrogenic anode[J]. Water Research, 2019, 156:   [24]  WHITELEY M, BANGERA M G, BUMGARNER R E, et al. Gene
                 125-135.                                          expression  in pseudomonas aeruginosa biofilms[J]. Nature, 2001,
            [5]   LIU Y F (刘远峰), GENG F H (耿凤华), LIU J B (刘建波), et al.   413(6858): 860-864.
                 Research on treatment of wastewater containing copper by microbial   [25]  ZHANG S P, QU  Z W, HSUEH C C,  et al. Deciphering  electron-
                 fuel cell[J]. Environmental Pollution & Control (环境污染与防治),   shuttling characteristics of Scutellaria baicalensis georgi and
                 2017, 39(2): 185-190.                             ingredients for bioelectricity generation in microbial fuel cells[J].
            [6]   LIU J B, LIU  Y  F, FENG C,  et al. Enhanced performance of   Journal of the Taiwan Institute of Chemical Engineers, 2018, 96:
                 microbial fuel cell using carbon microspheres modified graphite   361-373.
                 anode[J]. Energy Science & Engineering, 2017, 5(4): 217-225.   [26]  SHIRODKAR S, REED S, ROMINE M, et al. The octahaem SirA
            [7]   BAO H, ZHENG  Z W, YANG B,  et al. In  situ monitoring  of   catalyses dissimilatory sulfite reduction in Shewanella oneidensis
                 Shewanella oneidensis MR-1 biofilm growth on gold electrodes by   MR-1[J]. Environmental Microbiology, 2011, 13(1): 108-115.
   17   18   19   20   21   22   23   24   25   26   27