Page 22 - 《精细化工》2020年第9期
P. 22
·1736· 精细化工 FINE CHEMICALS 第 37 卷
效的电极材料是提高 MFCs 产电性能的重要因素, using a Pt microelectrode[J]. Bioelectrochemistry, 2016, 109:
95-100.
对电极材料进行改性可以提高电子传输的效率,同
[8] BOND D R, LOVLEY D R. Evidence for involvement of an electron
时避免了 Pt 贵金属的成本问题。 shuttle in electricity generation by Geothrix fermentans[J]. Applied
此外,膜材料是 MFCs 应用成本较高的影响因 and Environmental Microbiology, 2005, 71(4): 2186-2189.
[9] YANG T, ADHIKARI R Y, MALVANKAR N S, et al. The low
素,降低膜的制作成本及氧通量是研究者需要解决 conductivity of Geobacter uraniireducens pili suggests a diversity of
的问题,但目前还未发现可完全替代质子交换膜的 extracellular electron transfer mechanisms in the genus Geobacter[J].
Frontiers in Microbiology, 2016, 7: 980-989.
材料。 [10] YOU L X, LIU L D, XIAO Y, et al. Flavins mediate extracellular
对产电微生物的种类、应用及其影响因素进行 electron transfer in Gram-positive Bacillus megaterium strain
LLD-1[J]. Bioelectrochemistry, 2017, 119: 196-202.
分析,可以充分了解产电微生物的发展历程及在
[11] POTTER M C. Electrical effects accompanying the decomposition of
MFCs 中的作用。高效产电微生物对促进 MFCs 技 organic compounds[J].Proceeding of the Royal Society of London
术的应用具有重要的影响,筛选一种高活性、产电 Series B, Containing Papers of a Biological Character, 1911,
84(571): 260-276.
性及电子可穿透生物膜的微生物是目前主要的任 [12] GALINA P, LARS H, LO G. Extracellular electron transfer features
务。基于生物阴极在 MFCs 中应用的不断开发,且 of gram-positive bacteria[J]. Analytica Chimica Acta, 2019, 1076:
32-37.
阴极电子传递机制的研究远不如阳极,未来关于阴 [13] LOVLEY D R, MALVANKAR N S. Seeing is believing: Novel
极电子传递模式的探究也必将受到更广泛的关注。 imaging techniques help clarify microbial nanowire structure and
随着测序技术的不断完善,有望在微生物电子传递 function[J]. Environmental Microbiology, 2015, 17(7): 2209-2215.
[14] LIU X B, LIANG S, GU J D. Microbial electrocatalysis: Redox
机制方向发挥一定的作用。 mediators responsible for extracellular electron transfer[J].
从微生物角度分析,可以从以下几方面进行探 Biotechnology Advances, 2018, 36(7): 1815-1827.
[15] SHI L, DONG H L, REGUERA G, et al. Extracellular electron
究:(1)随着分子生物学技术的发展,运用基因技 transfer mechanisms between microorganisms and minerals[J].
术合成微生物来提高 MFCs 降解有机物同步产电的 Nature Reviews Microbiology, 2016, 14: 651-662.
[16] HOLMES D E, NEVIN K P, SNOEYENBOS-WEST O L, et al.
性能是未来研究的重点,控制好微生物群落生长的
Protozoan grazing reduces the current output of microbial fuel
pH、温度和负荷率等变量,以期在 MFCs 运行过程 cells[J]. Bioresource Technology, 2015, 193: 8-14.
中获得最佳的产电效率;(2)进行 MFCs 堆叠的探 [17] MAZZOLDI F. Creating life through generative design[EB/OL].
Tech Cruch, 2016. https://techcrunch.com/2016/07/08/creating-life-
究,研究微生物的代谢路径,以提高输出电压; through-generative-design/.
(3)继续深化电子传递机制的研究,提高电子传递 [18] LIU Q, YANG Y, MEI X X, et al. Response of the microbial
community structure of biofilms to ferric iron in microbial fuel
效率,筛选出更多的产电菌;(4)制备新型的电子 cells[J]. Science of the Total Environment, 2018, 631/632: 695-701.
传递中间体促进传递效率;(5)研究生物相容性材 [19] KUMAR R, SINGH L, ZULARISAM A W. Exoelectrogens: Recent
advances in molecular drivers involved in extracellular electron
料,用于筛选及保存产电微生物。
transfer and strategies used to improve it for microbial fuel cell
applications[J]. Renewable and Sustainable Energy Reviews, 2016,
参考文献: 56: 1322-1336.
[1] CHEN S, PATIL S A, BROWN R K, et al. Strategies for optimizing [20] XIAO Y, WU S, ZHANG F, et al. Promoting electrogenic ability of
the power output of microbial fuel cells: Transitioning from microbes with negative pressure[J]. Journal of Power Sources, 2013,
fundamental studies to practical implementation[J]. Applied Energy, 229: 79-83.
2019, 233/234: 15-28. [21] IEROPOULOS I A, GREENMAN J, MELHUISH C, et al. Comparative
[2] NGUYEN D T, TAGUCHI K. A disposable water-activated study of three types of microbial fuel cell[J]. Enzyme and Microbial
paper-based MFC using dry E. coli biofilm[J]. Biochemical Technology, 2005, 37(2): 238-245.
Engineering Journal, 2019, 143: 161-168. [22] MOHAN S V, VELVIZHI G, MODESTRA J A, et al. Microbial fuel
[3] MASSAGLIA G, MARGARIA V, SACCO A, et al. N-doped carbon cell: Critical factors regulating bio-catalyzed electrochemical process
nanofibers as catalyst layer at cathode in single chamber microbial and recent advancements[J]. Renewable and Sustainable Energy
fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(9): Reviews, 2014, 40(12): 779-797.
4442-4449. [23] SCHRODER U. Anodic electron transfer mechanisms in microbial
[4] WANG X X, HU J P, CHEN Q. Synergic degradation of fuel cells and their energy efficiency[J]. Physical Chemistry Chemical
2,4,6-trichlorophenol in microbial fuel cells with intimately coupled Physics, 2007, 9(21): 2619-2629.
photocatalytic-electrogenic anode[J]. Water Research, 2019, 156: [24] WHITELEY M, BANGERA M G, BUMGARNER R E, et al. Gene
125-135. expression in pseudomonas aeruginosa biofilms[J]. Nature, 2001,
[5] LIU Y F (刘远峰), GENG F H (耿凤华), LIU J B (刘建波), et al. 413(6858): 860-864.
Research on treatment of wastewater containing copper by microbial [25] ZHANG S P, QU Z W, HSUEH C C, et al. Deciphering electron-
fuel cell[J]. Environmental Pollution & Control (环境污染与防治), shuttling characteristics of Scutellaria baicalensis georgi and
2017, 39(2): 185-190. ingredients for bioelectricity generation in microbial fuel cells[J].
[6] LIU J B, LIU Y F, FENG C, et al. Enhanced performance of Journal of the Taiwan Institute of Chemical Engineers, 2018, 96:
microbial fuel cell using carbon microspheres modified graphite 361-373.
anode[J]. Energy Science & Engineering, 2017, 5(4): 217-225. [26] SHIRODKAR S, REED S, ROMINE M, et al. The octahaem SirA
[7] BAO H, ZHENG Z W, YANG B, et al. In situ monitoring of catalyses dissimilatory sulfite reduction in Shewanella oneidensis
Shewanella oneidensis MR-1 biofilm growth on gold electrodes by MR-1[J]. Environmental Microbiology, 2011, 13(1): 108-115.