Page 226 - 《精细化工》2021年第1期
P. 226
·216· 精细化工 FINE CHEMICALS 第 38 卷
90%和 90%,可能是氟原子的吸电子能力太强,导致 参考文献:
产物产率与其他含吸电子基团的苯甲醛相差较大;而 [1] WEEKES A A, WESTWELL A D. 2-Arylbenzothiazole as a privileged
scaffold in drug discovery[J]. Current Medicinal Chemistry, 2009,
邻氨基苯硫酚与含有给电子基(p-Me, p-OMe)的苯 16: 2430-2440.
甲醛反应时,其产物Ⅲg 与Ⅲh 的产率都为 98%。因 [2] QIAN X H, LEE P M, CAO S. China: Forward to the green
pesticides via a basic research program[J]. Journal of Agricultural
此,无论是给电子还是吸电子基团的苯甲醛与邻氨基 and Food Chemistry, 2010, 58(5): 2624-2629.
[3] DEY S, EFIMOV A, GIRI C, et al. Electronic structure manipulation
苯硫酚反应时,产物都有较好的产率;另外,当 2-氨 of (benzothiazole)zinc complexes: Synthesis, optical and electrochemical
studies of 5-substituted derivatives[J]. European Journal of Organic
基-4-氯苯硫酚与苯甲醛反应时,其产物Ⅲl 的产率可 Chemistry, 2011, 31: 6226-6232.
[4] ZHANG X H, WONG Q Y, GAO Z Q, et al. A new blue emitting
达 96%;此外,空间位阻对此反应有较大影响,当不 benzothiazole derivative for organic electroluminescent devices[J].
同位置的溴取代苯甲醛(p-Br, o-Br, m-Br)与邻氨基 Materials Science and Engineering, 2008, 2: 1018-1021.
[5] AMATA A, RIGAU J, NICOLAU R, et al. Effect of red and
苯硫酚反应时,其产物Ⅲd、Ⅲe、Ⅲf 的产率分别为 near-infrared laser light on adenosine triphosphate (ATP) in the
luciferine-luciferase reaction[J]. Journal of Photochemistry and
90%、55%与 50%;不同类型的杂环醛(吡啶基、呋 Photobiology A: Chemistry, 2004, 168: 59-65.
[6] CHANG S M, TZENG Y J, WU S Y, et al. Emission of white light
喃基、噻吩基)与邻氨基苯硫酚反应时,产物Ⅲi、 from 2-(2-hydroxyphenyl) benzothiazole in polymer electroluminescent
devices[J]. Thin Solid Films, 2005, 477: 38-41.
Ⅲj、Ⅲk 的产率分别为 92%、90%与 75%,表明杂 [7] DELMAS F, DI G C, ROBIN M, et al. In vitro activities of position 2
环类醛对此类反应也有较好的普适性。 substitution-bearing 6-nitro- and 6-amino-benzothiazoles and their
corresponding anthranilic acid derivatives against Leishmania infantum
and Trichomonas vaginalis[J] Antimicrobial Agents Chemotherapy,
表 4 在 DES 中合成 2-取代苯并噻唑衍生物 2002, 46(8): 2588-2594.
Table 4 Synthesis of 2-disubstituted benzothiazole derivatives [8] MOURI T, TOKUMURA J, KOCHI S, et al. Synthesis and acaricidal
in DES activities of new 2-polyfluorophenylbenzazole derivatives[J]. Journal
of Pesticide Science, 2002, 27(4): 353-359.
[9] CHEVRIE D, LEQUEUX T, DEMOUTE J P, et al. A convenient
序号 Ⅰ Ⅱ Ⅲ 产率/% 文献产率/%
one-step synthesis of fluoroethylidene derivatives[J]. Tetrahedron
Letters, 2003, 44(44): 8127-8130.
1 Ⅲa 94 77 [21] [10] DUTTA G K, GUHA S, PATIL S. Synthesis of liquid crystalline
benzothiazole based derivatives: A study of their optical and electrical
properties[J]. Organic Electronics, 2010, 11(1): 1-9.
2 Ⅲb 20 ① 58 [21] [11] DAI X Q (戴小强), ZHU Y B (朱亚波), WANG Z Y (汪洲洋), et al.
Progress in 2-position functionalized synthesis of
2-substitutedbenzothiazoles[J]. Chinese Journal of Organic Chemistry
[21]
①
3 Ⅲc 90 75 (有机化学), 2017, 37(8): 1924-1938.
[12] ZHANG Q H, VIGIER K D, ROYER S, et al. Deep eutectic
4 Ⅲd 90 ① 79 [21] solvents: Syntheses, properties and applications[J]. Chemical Society
Reviews, 2012, 41(21): 7108-7146.
[13] SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents
5 Ⅲe 55 56 [21] (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21):
11060-11082.
[14] LIU P, HAO J W, MO L P, et al. Recent advances in the application
6 Ⅲf 50 66 [21] of deep eutectic solvents as sustainable media as well as catalysts in
organic reactions[J]. RSC Advances, 2015, 5(60): 48675-48704.
[15] LU Y (卢粤), LIANG M (梁萌), JIANG G F (姜国芳), et al.
7 Ⅲg 98 85 [21] Synthesis of quinoline derivatives by deep eutectic solvent
method[J]. Fine Chemicals (精细化工), 2018, 35(8): 1427-1431.
[16] HAMAD A A, HAYYAN M, ALSAADI M A, et al. Potential
8 Ⅲh 98 75 [21] applications of deep eutectic solvents in nanotechnology[J]. Chemical
Engineering Journal, 2015, 273: 551-567.
[17] PATZOLD M, SIEBENHALLER S, KARA S, et al. Deep eutectic
[20]
9 Ⅲi 92 65 solvents as efficient solvents in biocatalysis[J]. Trends in Biotechnology,
2019, 37(9): 943-959.
10 Ⅲj 90 72 [20] [18] RUESGAS R M, FIGUEROA E M C, DURAND E. Application of
deep eutectic solvents (DES) for phenolic compounds extraction:
Overview, challenges, and opportunities[J]. Journal of Agricultural
11 Ⅲk 75 66 [20] and Food Chemistry, 2017, 65(18): 3591-3601.
[19] FENG B C (冯柏成), GE P Y (葛平宇), HOU X C (侯喜超), et al.
α-Acylation of β-dicarbonyl compounds in deep eutectic solvents[J].
12 Ⅲl 96 93 [21] Fine Chemicals (精细化工), 2020, 37(1): 207-211.
[20] ZHANG J, ZHAO X, LIU P, et al. TBHP/KI-promoted annulation of
anilines, ethers, and elemental sulfur: Access to 2-aryl-, 2-heteroaryl-,
①反应时间为 4 h。 or 2-alkyl-substituted benzothiazoles[J]. The Journal of Organic
Chemistry, 2019, 84(19): 12596-12605.
[21] SONG Q L, FENG Q, ZHOU M X. Copper-catalyzed oxidative
3 结论 decarboxylative arylation of benzothiazoles with phenylacetic acids
and α-hydroxyphenylacetic acids with O 2 as the sole oxidant[J].
Organic Letters, 2013, 15(23): 5990-5993.
作者以氯化胆碱-乙酰胺组成的深共融溶剂为 [22] GHORASHI N, SHOKRI Z, MORADI R, et al. Aerobic oxidative
synthesis of quinazolinones and benzothiazoles in the presence of
反应介质,用一种简单、温和、高效的方法合成了 laccase/DDQ as a bioinspired cooperative catalytic system under
mild conditions[J]. RSC Advances, 2010, 10: 14254-14261.
一系列 2-取代苯并噻唑类化合物。该方法在较短时 [23] ROSTAMI A, YARI A. Sulfamic acid as a recyclable and green
间内,即可促进邻氨基苯硫酚与苯甲醛的环化反应, catalyst for rapid and highly efficient synthesis of 2-arylbenzothiazoles
in water at room temperature[J]. Journal of the Iranian Chemical
得到高产率的产物。深共融溶剂循环使用 3 次后, Society, 2012, 9(4): 489-493.
[24] DAVID B, LIMA F, MARCELO M, et al. α-Keto acids as acylating
催化活性稍有减弱。深共融溶剂制作简单,成本低 agents in the synthesis of 2-substituted benzothiazoles and
benzoselenazoles[J]. European Journal of Organic Chemistry, 2017,
廉,是一种可循环利用的绿色反应介质。 26: 3830-3836.