Page 172 - 《精细化工》2021年第10期
P. 172

·2102·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 实验过程中,每一次都会有少量催化剂损失,                              Chinese Universities, 2011, 32(3): 783-786.
                                                               [7]   DING Z J (丁智俊), WANG Y Y (王媛媛), WANG D (王丹), et al.
            故在下一次重复反应前向回收(反应完成后过滤、洗                                Cyclohexene epoxidation using molecular oxygen on polyoxometalate
            涤和干燥)的 CdMoP-80 催化剂中补加 0.02~0.05 g                     hybrid catalysts[J]. Journal of Chemical  Engineering of Chinese
                                                                   Universities (高校化学工程学报), 2019, 23(5): 1098-1106.
            新催化剂。                                              [8]   ZHANG H Y, YANG X T, SONG X J. et al. Hydrothermal synthesis
                 由图 9 可知,催化剂使用 4 次,选择性基本一                          of tungsten-tin bimetallic MFI type zeolites and their catalytic
                                                                   properties for cyclohexene epoxidation[J]. Microporous and Mesoporous
            致,转化率逐渐降低至 75%。可能由催化剂使用过
                                                                   Materials, 2020, 303: 110277.
            程中部分活性中心流失、催化剂表面活性中心被覆                             [9]   ZHAO J W, LENG Y, JIANG P P, et al. POSS-derived mesoporous
                                                                   ionic copolymer-polyoxometalate  catalysts with surfactant function
            盖或少量酸性被中和等因素所致。
                                                                   for epoxidation reactions[J]. New Journal of Chemistry, 2015, 40(2):
                                                                   1022-1028.
            3    结论                                            [10]  FAROKHI A, HOSSEINI-MONFARED H. A recyclable Mn-porphyrin
                                                                   catalyst for enantioselective epoxidation of unfunctionalized olefins
                                                                   using molecular dioxygen[J]. New Journal of Chemistry, 2016, 40(6):
                 采用离子液体热合成法成功制备 CdMoP 复合
                                                                   5032-5043.
            氧化物催化剂,并在温度为 55  ℃、CdMoP 复合氧                       [11]  LUQUE  R, BADAMALI S K, CLARK J H,  et al.  Controlling
            化物用量 0.2 g、环己烯 2 mL、质量分数 30%过氧                         selectivity in catalysis:  Selective greener oxidation of cyclohexene
                                                                   under microwave conditions[J]. Applied Catalysis A General, 2008,
            化氢   4 mL、反应时间 4 h 条件下,催化环己烯氧化                         341(1/2): 154-159.
            制备环氧环己烷反应,得到环己烯转化率最高为                              [12]  WU J H, JIANG P P, LENG Y, Y et al. Synthesis of dicationic alkyl
                                                                   imidazolium peroxopolyoxotungsten-based phase transfer catalyst
            99.2%,环氧环己烷选择性最高为 96.6%。CdMoP-80                       and its catalytic activity for olefin epoxidation[J]. Chinese Journal of
            使用 4 次后,选择性基本保持不变,转化率降至                                Catalysis, 2013, 34: 2236-2244.
                                                               [13]  LI J L (李金林), ZHANG M Z (张曼征). Kinds and properties of
            75%。通过表征分析及催化剂性能研究系统分析了                                epoxidizing catalysts for olefins[J]. Journal of South-Central University
            催化剂的构效关系,CdMoP 复合氧化物催化剂具有                              for Nationalities (中南民族大学学报:  自然科学版), 1994, 13(2):
                                                                   81-88.
            高活性、高选择性,其原因在于采用离子液体热合                             [14]  MAMORU A. Partial oxidation of toluene to  benzaldehyde over
            成法所制催化剂为复合氧化物且活性中心存在                                   molybdenum-phosphorus oxide catalyst[J]. Journal of the Society of
                                                                   Chemical Industry Japan, 1971, 74(8): 1636-1639.
            CdMoO 4 、Na 2 Mo 2 O 7 和 Na 5 P 3 O 10 不同的氧化物形态;   [15]  DAS S, HEASMAN P, BEN T,  et al.  Porous organic  materials:
            同时离子液体能够协同固定 P 元素,从而显著提高                               Strategic design and structure-function correlation[J]. Chemical
                                                                   Reviews, 2017, 117(3): 1515-1563.
            了催化剂的表面酸性,提升了催化剂的催化性能。                             [16]  IAALI K K. Lonic liquids in synthesis[J]. Synthesis, 2003, 11: 1752-
            具备特殊功能的离子液体新材料与传统常规溶剂相                                 1752.
                                                               [17]  MOFFAT J B, HIGHFIELD J G. Fourier-transform infrared photoacoustic
            比在热稳定性、固载方面具有独特的优势,在工业                                 spectroscopy for the characterization of heteropoly compounds and
            使用中无有害气体产生,是传统有机溶剂的良好替                                 sorbed intermediates of catalytic interest-science direct[J]. Studies in
                                                                   Surface Science and Catalysis, 1984, 19: 77-84.
            代品。同时,本研究选择氧化反应中最困难的环己                             [18]  GE X (葛欣),  YAN M Z (颜茂珠), ZHANG H  L (张惠良).
            烯氧化反应作为衡量催化剂活性的探针分子,具有                                 Coulometric titration with pentavalent molybdenum-determination of
                                                                   cerium, chromium  and vanadium[J]. Chinese Journal of Inorganic
            代表性和检验性,为氧化反应的生产技术及工艺研
                                                                   Chemistry (无机化学学报), 1997, 13(1): 21-27.
            究的突破提供理论和经验储备。                                     [19]  ZHONG  L F, ZHANG Y M, TANG  Y,  et al. Synthesis and
                                                                   characterization of Keggin P-Mo-V heteropolyanion and its
            参考文献:                                                  Langmuir-Blodgett film[J]. Polyhedron, 2003, 22(18): 2647-2653.
                                                               [20]  WANG F, DUBOIS J L, UEDA W. Catalytic dehydration of glycerol
            [1]   RAO A S. Addition reactions with formation  of carbon-oxygen   over vanadium phosphate oxides in the presence of molecular
                 bonds: (i) General methods of epoxidation[J]. Comprehensive Organic   oxygen[J]. Journal of Catalysis, 2009, 268(2): 260-267.
                 Synthesis, 1991, 7: 357-387.                  [21]  ZHENG Y (郑勇), ZHENG Y J (郑永军), WANG M Y (王梦媛), et
            [2]   FRAILE J M, GARCÍA J I, MAYORAL J A, et al. Optimization of   al.  Study on infrared spectra of some typical imidazolium-based
                 cyclohexene epoxidation with dilute hydrogen  peroxide and silica-   ionic liquids[J]. Guangzhou Chemical Industry (广州化工), 2017,
                 supported titanium catalysts[J]. Applied Catalysis A General, 2003,   45(21): 88-89.
                 245(2): 363-376.                              [22]  CHENG P, CHENG L, ZENG Y, et al. Three-dimension hierarchical
            [3]   JIN M M, NIU Q T, GUO Z M, et al. Epoxidation of cyclohexene   heterostructure of CdWO 4  microrods decorated with Bi 2WO 6
                 with H 2O 2 over efficient water-tolerant heterogeneous catalysts   nanoplates for high-selectivity photocatalytic benzene hydroxylation
                 composed of mono-substituted phosphotungstic acid on co-functionalized   to phenol[J]. Applied Catalysis B: Environmental, 2018, 234: 311-317.
                 SBA-15[J]. Applied Organometallic Chemistry, 2019, 33(9): 1-12.     [23]  SONG K Y, PARK M K, KWON  Y T,  et al. Preparation  of
            [4]   ZHANG Y D (章亚东), JIANG D G (蒋登高), GAO X L (高晓蕾),   transparent particulate MoO 3/TiO 2 and WO 3/TiO 2 films and their
                 et al. Study of process for synthesis of epoxycyclohexane with   photocatalytic properties[J]. Chemistry of Materials, 2001, 13(7):
                 t-butyl hydroperoxide as oxidant[J]. Fine Chemicals (精细化工),   2349-2355.
                 2002, 19(5): 291-294.                         [24]  BARBAUX Y, DEKIOU M, MAGUER D L, et al. Bulk and surface
            [5]   AMBROSE  K, MURPHY J N, KOZAK C M.  Chromium  amino-   analysis of a Fe-P-O oxydehydrogenation catalyst[J]. 1992, 90(1):
                 bis(phenolate) complexes as catalysts for ring-opening polymerization   51-60.
                 of cyclohexene oxide[J]. Macromolecules, 2019, 52(19): 7403-7412.     [25]  XUE Y M (徐友明), SHEN B X (沈本贤), HE J H (何金海), et al. Study
            [6]   AN W J, XU L. Highly selective cxidation of cyclohexene via trivacant   of surface acidity of γ-Al 2O 3 support by PASCA and NH 3-TPD[J]. Journal
                 Keggin-type phosphotungstate as catalysts[J]. Chemical  Journal  of   of Instrumental Analysis (分析测试学报), 2006, 25(1): 41-44.
   167   168   169   170   171   172   173   174   175   176   177