Page 172 - 《精细化工》2021年第10期
P. 172
·2102· 精细化工 FINE CHEMICALS 第 38 卷
实验过程中,每一次都会有少量催化剂损失, Chinese Universities, 2011, 32(3): 783-786.
[7] DING Z J (丁智俊), WANG Y Y (王媛媛), WANG D (王丹), et al.
故在下一次重复反应前向回收(反应完成后过滤、洗 Cyclohexene epoxidation using molecular oxygen on polyoxometalate
涤和干燥)的 CdMoP-80 催化剂中补加 0.02~0.05 g hybrid catalysts[J]. Journal of Chemical Engineering of Chinese
Universities (高校化学工程学报), 2019, 23(5): 1098-1106.
新催化剂。 [8] ZHANG H Y, YANG X T, SONG X J. et al. Hydrothermal synthesis
由图 9 可知,催化剂使用 4 次,选择性基本一 of tungsten-tin bimetallic MFI type zeolites and their catalytic
properties for cyclohexene epoxidation[J]. Microporous and Mesoporous
致,转化率逐渐降低至 75%。可能由催化剂使用过
Materials, 2020, 303: 110277.
程中部分活性中心流失、催化剂表面活性中心被覆 [9] ZHAO J W, LENG Y, JIANG P P, et al. POSS-derived mesoporous
ionic copolymer-polyoxometalate catalysts with surfactant function
盖或少量酸性被中和等因素所致。
for epoxidation reactions[J]. New Journal of Chemistry, 2015, 40(2):
1022-1028.
3 结论 [10] FAROKHI A, HOSSEINI-MONFARED H. A recyclable Mn-porphyrin
catalyst for enantioselective epoxidation of unfunctionalized olefins
using molecular dioxygen[J]. New Journal of Chemistry, 2016, 40(6):
采用离子液体热合成法成功制备 CdMoP 复合
5032-5043.
氧化物催化剂,并在温度为 55 ℃、CdMoP 复合氧 [11] LUQUE R, BADAMALI S K, CLARK J H, et al. Controlling
化物用量 0.2 g、环己烯 2 mL、质量分数 30%过氧 selectivity in catalysis: Selective greener oxidation of cyclohexene
under microwave conditions[J]. Applied Catalysis A General, 2008,
化氢 4 mL、反应时间 4 h 条件下,催化环己烯氧化 341(1/2): 154-159.
制备环氧环己烷反应,得到环己烯转化率最高为 [12] WU J H, JIANG P P, LENG Y, Y et al. Synthesis of dicationic alkyl
imidazolium peroxopolyoxotungsten-based phase transfer catalyst
99.2%,环氧环己烷选择性最高为 96.6%。CdMoP-80 and its catalytic activity for olefin epoxidation[J]. Chinese Journal of
使用 4 次后,选择性基本保持不变,转化率降至 Catalysis, 2013, 34: 2236-2244.
[13] LI J L (李金林), ZHANG M Z (张曼征). Kinds and properties of
75%。通过表征分析及催化剂性能研究系统分析了 epoxidizing catalysts for olefins[J]. Journal of South-Central University
催化剂的构效关系,CdMoP 复合氧化物催化剂具有 for Nationalities (中南民族大学学报: 自然科学版), 1994, 13(2):
81-88.
高活性、高选择性,其原因在于采用离子液体热合 [14] MAMORU A. Partial oxidation of toluene to benzaldehyde over
成法所制催化剂为复合氧化物且活性中心存在 molybdenum-phosphorus oxide catalyst[J]. Journal of the Society of
Chemical Industry Japan, 1971, 74(8): 1636-1639.
CdMoO 4 、Na 2 Mo 2 O 7 和 Na 5 P 3 O 10 不同的氧化物形态; [15] DAS S, HEASMAN P, BEN T, et al. Porous organic materials:
同时离子液体能够协同固定 P 元素,从而显著提高 Strategic design and structure-function correlation[J]. Chemical
Reviews, 2017, 117(3): 1515-1563.
了催化剂的表面酸性,提升了催化剂的催化性能。 [16] IAALI K K. Lonic liquids in synthesis[J]. Synthesis, 2003, 11: 1752-
具备特殊功能的离子液体新材料与传统常规溶剂相 1752.
[17] MOFFAT J B, HIGHFIELD J G. Fourier-transform infrared photoacoustic
比在热稳定性、固载方面具有独特的优势,在工业 spectroscopy for the characterization of heteropoly compounds and
使用中无有害气体产生,是传统有机溶剂的良好替 sorbed intermediates of catalytic interest-science direct[J]. Studies in
Surface Science and Catalysis, 1984, 19: 77-84.
代品。同时,本研究选择氧化反应中最困难的环己 [18] GE X (葛欣), YAN M Z (颜茂珠), ZHANG H L (张惠良).
烯氧化反应作为衡量催化剂活性的探针分子,具有 Coulometric titration with pentavalent molybdenum-determination of
cerium, chromium and vanadium[J]. Chinese Journal of Inorganic
代表性和检验性,为氧化反应的生产技术及工艺研
Chemistry (无机化学学报), 1997, 13(1): 21-27.
究的突破提供理论和经验储备。 [19] ZHONG L F, ZHANG Y M, TANG Y, et al. Synthesis and
characterization of Keggin P-Mo-V heteropolyanion and its
参考文献: Langmuir-Blodgett film[J]. Polyhedron, 2003, 22(18): 2647-2653.
[20] WANG F, DUBOIS J L, UEDA W. Catalytic dehydration of glycerol
[1] RAO A S. Addition reactions with formation of carbon-oxygen over vanadium phosphate oxides in the presence of molecular
bonds: (i) General methods of epoxidation[J]. Comprehensive Organic oxygen[J]. Journal of Catalysis, 2009, 268(2): 260-267.
Synthesis, 1991, 7: 357-387. [21] ZHENG Y (郑勇), ZHENG Y J (郑永军), WANG M Y (王梦媛), et
[2] FRAILE J M, GARCÍA J I, MAYORAL J A, et al. Optimization of al. Study on infrared spectra of some typical imidazolium-based
cyclohexene epoxidation with dilute hydrogen peroxide and silica- ionic liquids[J]. Guangzhou Chemical Industry (广州化工), 2017,
supported titanium catalysts[J]. Applied Catalysis A General, 2003, 45(21): 88-89.
245(2): 363-376. [22] CHENG P, CHENG L, ZENG Y, et al. Three-dimension hierarchical
[3] JIN M M, NIU Q T, GUO Z M, et al. Epoxidation of cyclohexene heterostructure of CdWO 4 microrods decorated with Bi 2WO 6
with H 2O 2 over efficient water-tolerant heterogeneous catalysts nanoplates for high-selectivity photocatalytic benzene hydroxylation
composed of mono-substituted phosphotungstic acid on co-functionalized to phenol[J]. Applied Catalysis B: Environmental, 2018, 234: 311-317.
SBA-15[J]. Applied Organometallic Chemistry, 2019, 33(9): 1-12. [23] SONG K Y, PARK M K, KWON Y T, et al. Preparation of
[4] ZHANG Y D (章亚东), JIANG D G (蒋登高), GAO X L (高晓蕾), transparent particulate MoO 3/TiO 2 and WO 3/TiO 2 films and their
et al. Study of process for synthesis of epoxycyclohexane with photocatalytic properties[J]. Chemistry of Materials, 2001, 13(7):
t-butyl hydroperoxide as oxidant[J]. Fine Chemicals (精细化工), 2349-2355.
2002, 19(5): 291-294. [24] BARBAUX Y, DEKIOU M, MAGUER D L, et al. Bulk and surface
[5] AMBROSE K, MURPHY J N, KOZAK C M. Chromium amino- analysis of a Fe-P-O oxydehydrogenation catalyst[J]. 1992, 90(1):
bis(phenolate) complexes as catalysts for ring-opening polymerization 51-60.
of cyclohexene oxide[J]. Macromolecules, 2019, 52(19): 7403-7412. [25] XUE Y M (徐友明), SHEN B X (沈本贤), HE J H (何金海), et al. Study
[6] AN W J, XU L. Highly selective cxidation of cyclohexene via trivacant of surface acidity of γ-Al 2O 3 support by PASCA and NH 3-TPD[J]. Journal
Keggin-type phosphotungstate as catalysts[J]. Chemical Journal of of Instrumental Analysis (分析测试学报), 2006, 25(1): 41-44.