Page 194 - 《精细化工》2021年第10期
P. 194

·2124·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 of calcination temperature on crystal structure of CuFe 2O 4 in sol-gel   Science & Technology, 2013, 47(6): 2784-2791.
                 auto-combustion[J]. Chemical Industry and Engineering Progress(化  [20]  LYU J C, GE M, HU Z,  et al. One-pot synthesis of  magnetic
                 工进展), 2017, 36(11): 4182-4188.                    CuO/Fe 2O 3/CuFe 2O 4 nanocomposite  to activate persulfate for
            [12]  WANG  H Z (王华哲), GUO W Q (郭婉茜), REN N  Q (任南琪).   levofloxacin  removal: Investigation of efficiency,  mechanism and
                 Development and application of biochar-based metal-free persulfate   degradation route[J]. Chemical Engineering Journal, 2020, 389:
                 activators[J]. Acta Scientiae Circumstantiae (环境科学学报), 2020,   124456.
                 40(10): 3582-3589.                            [21]  YANG K (杨珂),  TANG Q (唐琪), YANG  X D  (杨晓丹),  et al.
            [13]  LI N, LO S, HU C, et al. Stabilization and phase transformation of   Degradation  of rhodamine B by  heterogeneous activation of
                 CuFe 2O 4 sintered from simulated copper-laden sludge[J]. Journal of   persulfate with copper ferrate[J]. China Environmental Science (中国
                 Hazardous Materials, 2011, 190(1/2/3): 597-603.   环境科学), 2019, 39(9): 3761-3769.
            [14]  XU G Y (许光益), SUI M H (隋铭皓), YUAN B J (袁博杰), et al.   [22]  HE J, XIAO Y, TANG J C, et al. Persulfate activation with sawdust
                 Degradation  of  norfloxacin  in  aqueous  solution  by  biochar in aqueous solution  by enhanced electron donor-transfer
                 peroxymonosulfate activated with CuFe 2O 4 nanoparticles[J]. Journal   effect[J]. Science of The Total Environment, 2019, 690: 768-777.
                 of Harbin Institute of Technology (哈尔滨工业大学学报), 2018,   [23]  LEI Y, CHEN  C  S, TU Y J,  et al.  Heterogeneous degradation of
                 50(2): 46-53.                                     organic pollutants by persulfate activated by CuO-Fe 3O 4: Mechanism,
            [15]  DU X D, ZHANG Y Q, SI F, et al. Persulfate non-radical activation   stability, and effects of  pH and bicarbonate ions[J]. Environmental
                 by nano-CuO for efficient removal of chlorinated organic   Science & Technology, 2015, 49(11): 6838-6845.
                 compounds: Reduced graphene oxide-assisted and CuO (001) facet-   [24]  DONG X, REN B X, SUN Z M,  et al. Monodispersed CuFe 2O 4
                 dependent[J]. Chemical Engineering Journal, 2019, 356: 178-189.   nanoparticles anchored  on  natural  kaolinite as highly efficient
            [16]  CHEN Z Q, WANG L Y, XU H  D,  et al. Efficient heterogeneous   peroxymonosulfate catalyst for bisphenol A degradation[J]. Applied
                 activation  of peroxymonosulfate by modified CuFe 2O 4 for   Catalysis B: Environmental, 2019, 253: 206-217.
                 degradation of tetrabromobisphenol  A[J]. Chemical  Engineering   [25]  KARIMIPOURFARD D, ESLAMLOUEYAN R, MEHRANBOD N.
                 Journal, 2020, 389: 124345.                       Heterogeneous degradation of stabilized landfill leachate using
            [17]  ZHAO J J, SUN  Y J, WU F C,  et al. Oxidative degradation of   persulfate activation by CuFe 2O 4 nanocatalyst: An experimental
                 amoxicillin in aqueous solution by thermally activated persulfate[J].   investigation[J]. Journal  of Environmental Chemical Engineering,
                 Journal of Chemistry, 2019, 368: 553-563.         2020, 8(2): 103426.
            [18]  MA Q L, ZHANG H X, ZHANG X Y, et al. Synthesis of magnetic   [26]  BHATT D K, PATEL  U D. Photocatalytic degradation of reactive
                 CuO/MnFe 2O 4 nanocompisite and its high activity for degradation of   black 5 using Ag 3PO 4 under visible light[J]. Journal of Physics and
                 levofloxacin  by activation  of persulfate[J]. Chemical Engineering   Chemistry of Solids, 2021, 149: 109768.
                 Journal, 2019, 360: 848-860.                  [27]  YU C Z (俞承志), XIE X H (谢学辉), ZHENG X L (郑秀林), et al.
            [19]  ZHANG T, ZHU H B, CROUÉ J. Production of sulfate radical from   Decolorization and repigmentation of reactive black 5 biodegradation
                 peroxymonosulfate induced by a  magnetically separable CuFe 2O 4   and their mechanisms[J]. Chemical Industry and Engineering
                 spinel in water: Efficiency, stability, and mechanism[J]. Environmental   Progress (化工进展), 2016, 35(9): 2987-2996.


            (上接第 2110 页)                                           (高等教育出版社), 2001: 248-252.
            [9]   COHEN Y S, COHEN  Y, AURBACH D. Micromorphological   [17]  REN X D, ZHANG Y H, ENGELHARD M H, et al. Guided lithium
                 studies of lithium electrodes in alkyl carbonate solutions using in situ   metal deposition and improved lithium coulombic efficiency through
                 atomic force  microscopy[J].  The Journal of Physical Chemistry B,   synergistic effects of LiAsF 6 and cyclic carbonate additives[J]. ACS
                 2000, 104(51): 12282-12291.                       Energy Letters, 2017, 3(1): 14-19.
            [10]  CHENG X (程序), XIANG J N (项佳楠), YAO W J (姚伟颉), et al.   [18]  ZHANG Y H, QIAN J F, XU W, et al. Dendrite-free lithium deposition
                 Lithium storage properties of Si/VGCF composite materials[J]. Fine   with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12):
                 Chemicals (精细化工), 2019, 36(6): 1185-1190.         6889-6896.
            [11]  PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid   [19]  ZHENG H,  XIE Y,  XIANG H  F, et  al. A bifunctional electrolyte
                 electrolyte interphase electrodes in liquid and polymer electrolytes[J].   additive for separator wetting and dendrite suppression in lithium
                 Journal of the Electrochemical Society, 1997, 144(8): L208-L210.   metal batteries[J]. Electrochimica Acta, 2018, 270: 62-69.
            [12]  YANG X W (杨晓武), YANG R (杨蕊), QIU L W (秋列维), et al.   [20]  ZHANG J G, XU  W, XIAO J,  et al. Lithium  metal anodes with
                 Application of double layer structure Si/PPy composite anode in   nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24):
                 lithium-ion batteries[J]. Fine Chemicals (精细化工), 2018, 35(8):   13312-13348.
                 1376-1388.                                    [21]  AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of
            [13]  XIE Y, XIANG H F, SHI P C, et al. Enhanced separator wettability   failure mechanisms of lithium metal and lithiated graphite anodes in
                 by LiTFSI and its application for lithium metal batteries[J]. Journal   liquid electrolyte solutions[J]. Solid  State Ionics,  2002, 148(3/4):
                 of Membrane Science, 2017, 524: 315-320.          405-416.
            [14]  ZHENG H H (郑洪河),  et al. Lithium-ion battery electrolyte[M].   [22]  AURBACH D.  Review of selected electrode-solution interactions
                 Beijing: Chemical Industry Press (化学工业出版社), 2007: 34-36.   which determine the performance of Li and Li ion batteries[J]. Journal
            [15]  GRIGOREVA A, POLOZOV E,  ZAITSEV S. Reversible addition-   of Power Sources, 2000, 89(2): 206-218.
                 fragmentation chain transfer (RAFT) polymerization of 2,2,3,3-   [23]  LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in
                 tetrafluoropropyl  methacrylate:  Kinetic and structural  features[J].   liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014,
                 Journal of Fluorine Chemistry, 2020, 232. DOI: 10.1016/j.jfluchem.   13(10): 961-969.
                 2020.109484.                                  [24]  WANG D D, LIU H D, LI M Q, et al. A long-lasting dual-function
            [16]  CHEN Z Q (陈宗淇),  WANG G X (王光信), XU G Y  (徐桂英).   electrolyte additive for stable lithium metal batteries[J]. Nano Energy,
                 Colloid and interface chemistry[M]. Beijing: Higher Education Press   2020, 75. DOI: 10.1016/j.nanoen.2020.104889.
   189   190   191   192   193   194   195   196   197   198   199