Page 194 - 《精细化工》2021年第10期
P. 194
·2124· 精细化工 FINE CHEMICALS 第 38 卷
of calcination temperature on crystal structure of CuFe 2O 4 in sol-gel Science & Technology, 2013, 47(6): 2784-2791.
auto-combustion[J]. Chemical Industry and Engineering Progress(化 [20] LYU J C, GE M, HU Z, et al. One-pot synthesis of magnetic
工进展), 2017, 36(11): 4182-4188. CuO/Fe 2O 3/CuFe 2O 4 nanocomposite to activate persulfate for
[12] WANG H Z (王华哲), GUO W Q (郭婉茜), REN N Q (任南琪). levofloxacin removal: Investigation of efficiency, mechanism and
Development and application of biochar-based metal-free persulfate degradation route[J]. Chemical Engineering Journal, 2020, 389:
activators[J]. Acta Scientiae Circumstantiae (环境科学学报), 2020, 124456.
40(10): 3582-3589. [21] YANG K (杨珂), TANG Q (唐琪), YANG X D (杨晓丹), et al.
[13] LI N, LO S, HU C, et al. Stabilization and phase transformation of Degradation of rhodamine B by heterogeneous activation of
CuFe 2O 4 sintered from simulated copper-laden sludge[J]. Journal of persulfate with copper ferrate[J]. China Environmental Science (中国
Hazardous Materials, 2011, 190(1/2/3): 597-603. 环境科学), 2019, 39(9): 3761-3769.
[14] XU G Y (许光益), SUI M H (隋铭皓), YUAN B J (袁博杰), et al. [22] HE J, XIAO Y, TANG J C, et al. Persulfate activation with sawdust
Degradation of norfloxacin in aqueous solution by biochar in aqueous solution by enhanced electron donor-transfer
peroxymonosulfate activated with CuFe 2O 4 nanoparticles[J]. Journal effect[J]. Science of The Total Environment, 2019, 690: 768-777.
of Harbin Institute of Technology (哈尔滨工业大学学报), 2018, [23] LEI Y, CHEN C S, TU Y J, et al. Heterogeneous degradation of
50(2): 46-53. organic pollutants by persulfate activated by CuO-Fe 3O 4: Mechanism,
[15] DU X D, ZHANG Y Q, SI F, et al. Persulfate non-radical activation stability, and effects of pH and bicarbonate ions[J]. Environmental
by nano-CuO for efficient removal of chlorinated organic Science & Technology, 2015, 49(11): 6838-6845.
compounds: Reduced graphene oxide-assisted and CuO (001) facet- [24] DONG X, REN B X, SUN Z M, et al. Monodispersed CuFe 2O 4
dependent[J]. Chemical Engineering Journal, 2019, 356: 178-189. nanoparticles anchored on natural kaolinite as highly efficient
[16] CHEN Z Q, WANG L Y, XU H D, et al. Efficient heterogeneous peroxymonosulfate catalyst for bisphenol A degradation[J]. Applied
activation of peroxymonosulfate by modified CuFe 2O 4 for Catalysis B: Environmental, 2019, 253: 206-217.
degradation of tetrabromobisphenol A[J]. Chemical Engineering [25] KARIMIPOURFARD D, ESLAMLOUEYAN R, MEHRANBOD N.
Journal, 2020, 389: 124345. Heterogeneous degradation of stabilized landfill leachate using
[17] ZHAO J J, SUN Y J, WU F C, et al. Oxidative degradation of persulfate activation by CuFe 2O 4 nanocatalyst: An experimental
amoxicillin in aqueous solution by thermally activated persulfate[J]. investigation[J]. Journal of Environmental Chemical Engineering,
Journal of Chemistry, 2019, 368: 553-563. 2020, 8(2): 103426.
[18] MA Q L, ZHANG H X, ZHANG X Y, et al. Synthesis of magnetic [26] BHATT D K, PATEL U D. Photocatalytic degradation of reactive
CuO/MnFe 2O 4 nanocompisite and its high activity for degradation of black 5 using Ag 3PO 4 under visible light[J]. Journal of Physics and
levofloxacin by activation of persulfate[J]. Chemical Engineering Chemistry of Solids, 2021, 149: 109768.
Journal, 2019, 360: 848-860. [27] YU C Z (俞承志), XIE X H (谢学辉), ZHENG X L (郑秀林), et al.
[19] ZHANG T, ZHU H B, CROUÉ J. Production of sulfate radical from Decolorization and repigmentation of reactive black 5 biodegradation
peroxymonosulfate induced by a magnetically separable CuFe 2O 4 and their mechanisms[J]. Chemical Industry and Engineering
spinel in water: Efficiency, stability, and mechanism[J]. Environmental Progress (化工进展), 2016, 35(9): 2987-2996.
(上接第 2110 页) (高等教育出版社), 2001: 248-252.
[9] COHEN Y S, COHEN Y, AURBACH D. Micromorphological [17] REN X D, ZHANG Y H, ENGELHARD M H, et al. Guided lithium
studies of lithium electrodes in alkyl carbonate solutions using in situ metal deposition and improved lithium coulombic efficiency through
atomic force microscopy[J]. The Journal of Physical Chemistry B, synergistic effects of LiAsF 6 and cyclic carbonate additives[J]. ACS
2000, 104(51): 12282-12291. Energy Letters, 2017, 3(1): 14-19.
[10] CHENG X (程序), XIANG J N (项佳楠), YAO W J (姚伟颉), et al. [18] ZHANG Y H, QIAN J F, XU W, et al. Dendrite-free lithium deposition
Lithium storage properties of Si/VGCF composite materials[J]. Fine with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12):
Chemicals (精细化工), 2019, 36(6): 1185-1190. 6889-6896.
[11] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid [19] ZHENG H, XIE Y, XIANG H F, et al. A bifunctional electrolyte
electrolyte interphase electrodes in liquid and polymer electrolytes[J]. additive for separator wetting and dendrite suppression in lithium
Journal of the Electrochemical Society, 1997, 144(8): L208-L210. metal batteries[J]. Electrochimica Acta, 2018, 270: 62-69.
[12] YANG X W (杨晓武), YANG R (杨蕊), QIU L W (秋列维), et al. [20] ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with
Application of double layer structure Si/PPy composite anode in nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24):
lithium-ion batteries[J]. Fine Chemicals (精细化工), 2018, 35(8): 13312-13348.
1376-1388. [21] AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of
[13] XIE Y, XIANG H F, SHI P C, et al. Enhanced separator wettability failure mechanisms of lithium metal and lithiated graphite anodes in
by LiTFSI and its application for lithium metal batteries[J]. Journal liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3/4):
of Membrane Science, 2017, 524: 315-320. 405-416.
[14] ZHENG H H (郑洪河), et al. Lithium-ion battery electrolyte[M]. [22] AURBACH D. Review of selected electrode-solution interactions
Beijing: Chemical Industry Press (化学工业出版社), 2007: 34-36. which determine the performance of Li and Li ion batteries[J]. Journal
[15] GRIGOREVA A, POLOZOV E, ZAITSEV S. Reversible addition- of Power Sources, 2000, 89(2): 206-218.
fragmentation chain transfer (RAFT) polymerization of 2,2,3,3- [23] LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in
tetrafluoropropyl methacrylate: Kinetic and structural features[J]. liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014,
Journal of Fluorine Chemistry, 2020, 232. DOI: 10.1016/j.jfluchem. 13(10): 961-969.
2020.109484. [24] WANG D D, LIU H D, LI M Q, et al. A long-lasting dual-function
[16] CHEN Z Q (陈宗淇), WANG G X (王光信), XU G Y (徐桂英). electrolyte additive for stable lithium metal batteries[J]. Nano Energy,
Colloid and interface chemistry[M]. Beijing: Higher Education Press 2020, 75. DOI: 10.1016/j.nanoen.2020.104889.