Page 65 - 《精细化工》2021年第10期
P. 65

第 10 期                  沙芯如,等:  仲胺桥联共价三嗪聚合物对 CO 2 的高选择性吸附                               ·1995·


                 Engineering, 2020: DOI: 10.1016/j.cjche.2020.11.028.   CO 2 selectivity in N 2-phobic nanoporous covalent organic
            [12]  YANG Z X (杨支秀), LU B (鲁博), GUO D D (郭丁丁), et al. Research   polymers[J]. Nature Communications, 2013, 4: 1357-1364.
                 status  and  progress of CO 2  capture and separation methods[J].   [21]  OSCHATZ M, ANTONIETTI M. A search for selectivity to enable
                 Shandong Chemical Industry (山东化工), 2020, 49(18): 62-64.   CO 2 capture with  porous adsorbents[J]. Energy & Environmental
            [13]  LEE S Y, PARK S J. A review on solid adsorbents for carbon dioxide   Science, 2018, 11: 57-70.
                 capture[J]. Journal of Industrial & Engineering Chemistry, 2015, 23:   [22]  LUO R C, XU W, CHEN M,  et al. Covalent triazine frameworks
                 1-11.                                             obtained from nitrile  monomers for sustainable CO 2 catalysis[J].
            [14]  CHEN Q, LUO M, HAMMERSHOJ P,  et al. Microporous   ChemSusChem, 2020, 13(24): 6509-6522.
                 polycarbazole with high specific surface area for gas storage and   [23]  BUYUKCAKIR O, JE S H,  TALAPANENI S N,  et al. Charged
                 separation[J]. Journal of the American Chemical Society, 2012,   covalent triazine frameworks for CO 2 capture and conversion[J].
                 134(14): 6084-6087.                               ACS Applied Materials & Interfaces, 2017, 9(8): 7209-7216.
            [15]  MOHANTY P, KULL  L D,  LANDSKRON K. Porous covalent   [24]  ZHANG J J (张金菊). Triazine-based organic polymer for carbon
                 electron-rich organonitridic frameworks as highly selective sorbents   dioxide capture and catalytic  conversion[D]. Dalian: Dalian
                 for methane and carbon dioxide[J]. Nature Communications, 2011, 2:   University of Technology (大连理工大学), 2019.
                 401-406.                                      [25]  THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption
            [16]  CHANG G J, SHANG Z F, YU T, et al. Rational design of a novel   of gases, with special reference to the evaluation of surface area and
                 indole-based microporous organic polymer: Enhanced carbon   pore size distribution (IUPAC technical report)[J]. Pure and Applied
                 dioxide uptake via local dipole-π interactions[J]. Journal of Materials   chemistry, 2015, 87(9/10): 1051-1069.
                 Chemistry A, 2016, 4(7): 2517-2523.           [26]  ZHU  Y W, MURALI S, STOLLER M D,  et al. Carbon-based
            [17]  BERA R, MONDAL S, DAS N, et al. Triptycene based microporous   supercapacitors produced by  activation of graphene[J]. Science,
                 polymers (TMPs): Efficient small gas (H 2 and CO 2) storage and high   2011, 332(6037): 1537-1541.
                 CO 2/N 2 selectivity[J]. Microporous and Mesoporous Materials, 2018,   [27]  KRUNGLEVICIUTE V, HEROUX L, MIGONE A D, et al. Isosteric
                 257: 253-261.                                     heat of argon adsorbed on single-walled carbon nanotubes prepared
            [18]  CHEN J, LI H, ZHONG M M, et al. Tuning the surface polarity of   by laser  ablation[J]. Journal of Physical Chemistry  B, 2005, 109:
                 microporous organic polymers for CO 2 capture[J]. Chemistry-An   9317-9320.
                 Asian Journal, 2017, 12(17): 2291-2298.       [28]  LI G Y (李桂洋). Construction of microporous polymers and their
            [19]  HUANG N, CHEN X, KRISHNA  R,  et al. Two-dimensional   adsorption properties of carbon dioxide and organic vapor[D].
                 covalent organic frameworks for carbon dioxide capture through   Dalian: Dalian University of Technology (大连理工大学), 2014.
                 channel-wall functionalization[J]. Angewandte Chemie International   [29]  BELMABKHOUT Y, SAYARI  A. Effect of pore expansion and
                 Edtion, 2015, 127(10): 3029-3033.                 amine functionalization of mesoporous silica on CO 2 adsorption over
            [20]  PATEL H A, JE S H, PARK J, et al. Unprecedented high-temperature   a wide range of conditions[J]. Adsorption, 2009, 15: 318-328.

            (上接第 1987 页)                                       [54]  ABUREL O M, PAVEL I Z, DĂNILĂ M D, et al. Pleiotropic effects
                                                                   of eugenol: The good, the bad, and the unknown[J]. Oxidative
            [46]  YANG S, ZHU S, HONG R.  Graphene oxide/polyaniline   Medicine and Cellular Longevity, 2021: 3165159.
                 nanocomposites used in anticorrosive coatings  for environmental   [55]  MAHAJAN  M S,  MAJULIKAR P P, GITE V  V.  Eugenol based
                 protection[J]. Coating, 2020, 10(12): 1215-1226.     renewable polyols for development of 2K anticorrosive polyurethane
            [47]  DONG C D, ZHANG M X, XIANG E F, et al. Novel self-healing   coatings[J]. Progress in Organic Coatings, 2020, 148: 105826.
                 anticorrosion coating based on L-valine and MBT-loaded halloysite   [56]  LEE J H, KIM S H, OH K W. Bio-based polyurethane foams with
                 nanotubes[J]. Journal of Materials Science, 2018, 53(10): 7793-7808.     castor oil based multifunctional polyols for improved compressive
            [48]  TUHIN  G, NIRANJAN K.  Cashew nut shell liquid  terminated   properties[J]. Polymers, 2021, 13(4): 576-587.
                 self-healable polyurethane as an effective anticorrosive coating with   [57]  GURGEL D, BRESOLIN D, SAYER C, et al. Flexible polyurethane
                 biodegradable attribute[J]. Progress in Organic Coatings, 2020, 139:   foams produced from industrial residues and castor oil[J]. Industrial
                 105472.                                           Crops & Products, 2021, 164: 113377.
            [49]  LI T, ZHANG P Z, RONG M Z, et al. Self-healable and thiolene UV-   [58]  CHANDRASHEKHAR K P, HARISHCHANDRA D, JIRIMALI J,
                 curable waterborne polyurethane for anticorrosion coating[J]. Journal   et al. Functional antimicrobial and anticorrosive polyurethane
                 of Applied Polymer Science, 2019, 136(26): 47700.     composite coatings from algae oil and silver doped egg shell
            [50]  LI Z T (李治韬), CHENG  Y (程原), ZHAO B B (赵本波),  et al.   hydroxyapatite for sustainable development[J]. Progress in Organic
                 Research progress of functional polyurethane in anticorrosive   Coatings, 2019, 128: 127-136.
                 coatings[J]. Chinese Polymer Bulletin (高分子通报), 2019, 6: 10-17.     [59]  CAO Y D, LIU Z Z, ZHENG B X, et al. Synthesis of lignin-based
            [51]  LI J, HU Y R, QIU H  X,  et al.  Coaxial electrospun fibres with   polyols  via thiol-ene chemistry for high-performance polyurethane
                 graphene oxide/PAN shells for self-healing waterborne polyurethane   anticorrosive coating[J]. Composites Part B, 2020, 200: 108295.
                 coatings[J]. Progress in Organic Coatings, 2019, 131: 227-231.     [60]  LIANG H Y, LU Q M, LIU M H, et al. UV absorption, anticorrosion,
            [52]  LI  J,  FENG Q K, CUI  J C,  et al.  Self-assembled graphene oxide   and long-term antibacterial performance of vegetable  oil  based
                 microcapsules in Pickering emulsions for self-healing waterborne   cationic waterborne polyurethanes enabled by amino acids[J].
                 polyurethane coatings[J]. Composites Science and Technology, 2017,   Chemical Engineering Journal, 2020, 421(2): 127774.
                 151: 282-290.                                 [61]  ABD M  E, ABDULRAHEIM M  A H, MOHAMED  K,  et al.
            [53]  ULANOWSKA M, OLAS B. Biological properties and prospects for   Nanocry-stalline cellulose as an eco-friendly reinforcing additive to
                 the application of eugenol—A review[J]. International Journal of   polyurethane coating for augmented anticorrosive behavior[J].
                 Molecular Sciences, 2021, 22(7): 3671-3684.       Carbohydrate Polymers, 2018, 183: 311-318.
   60   61   62   63   64   65   66   67   68   69   70