Page 65 - 《精细化工》2021年第10期
P. 65
第 10 期 沙芯如,等: 仲胺桥联共价三嗪聚合物对 CO 2 的高选择性吸附 ·1995·
Engineering, 2020: DOI: 10.1016/j.cjche.2020.11.028. CO 2 selectivity in N 2-phobic nanoporous covalent organic
[12] YANG Z X (杨支秀), LU B (鲁博), GUO D D (郭丁丁), et al. Research polymers[J]. Nature Communications, 2013, 4: 1357-1364.
status and progress of CO 2 capture and separation methods[J]. [21] OSCHATZ M, ANTONIETTI M. A search for selectivity to enable
Shandong Chemical Industry (山东化工), 2020, 49(18): 62-64. CO 2 capture with porous adsorbents[J]. Energy & Environmental
[13] LEE S Y, PARK S J. A review on solid adsorbents for carbon dioxide Science, 2018, 11: 57-70.
capture[J]. Journal of Industrial & Engineering Chemistry, 2015, 23: [22] LUO R C, XU W, CHEN M, et al. Covalent triazine frameworks
1-11. obtained from nitrile monomers for sustainable CO 2 catalysis[J].
[14] CHEN Q, LUO M, HAMMERSHOJ P, et al. Microporous ChemSusChem, 2020, 13(24): 6509-6522.
polycarbazole with high specific surface area for gas storage and [23] BUYUKCAKIR O, JE S H, TALAPANENI S N, et al. Charged
separation[J]. Journal of the American Chemical Society, 2012, covalent triazine frameworks for CO 2 capture and conversion[J].
134(14): 6084-6087. ACS Applied Materials & Interfaces, 2017, 9(8): 7209-7216.
[15] MOHANTY P, KULL L D, LANDSKRON K. Porous covalent [24] ZHANG J J (张金菊). Triazine-based organic polymer for carbon
electron-rich organonitridic frameworks as highly selective sorbents dioxide capture and catalytic conversion[D]. Dalian: Dalian
for methane and carbon dioxide[J]. Nature Communications, 2011, 2: University of Technology (大连理工大学), 2019.
401-406. [25] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption
[16] CHANG G J, SHANG Z F, YU T, et al. Rational design of a novel of gases, with special reference to the evaluation of surface area and
indole-based microporous organic polymer: Enhanced carbon pore size distribution (IUPAC technical report)[J]. Pure and Applied
dioxide uptake via local dipole-π interactions[J]. Journal of Materials chemistry, 2015, 87(9/10): 1051-1069.
Chemistry A, 2016, 4(7): 2517-2523. [26] ZHU Y W, MURALI S, STOLLER M D, et al. Carbon-based
[17] BERA R, MONDAL S, DAS N, et al. Triptycene based microporous supercapacitors produced by activation of graphene[J]. Science,
polymers (TMPs): Efficient small gas (H 2 and CO 2) storage and high 2011, 332(6037): 1537-1541.
CO 2/N 2 selectivity[J]. Microporous and Mesoporous Materials, 2018, [27] KRUNGLEVICIUTE V, HEROUX L, MIGONE A D, et al. Isosteric
257: 253-261. heat of argon adsorbed on single-walled carbon nanotubes prepared
[18] CHEN J, LI H, ZHONG M M, et al. Tuning the surface polarity of by laser ablation[J]. Journal of Physical Chemistry B, 2005, 109:
microporous organic polymers for CO 2 capture[J]. Chemistry-An 9317-9320.
Asian Journal, 2017, 12(17): 2291-2298. [28] LI G Y (李桂洋). Construction of microporous polymers and their
[19] HUANG N, CHEN X, KRISHNA R, et al. Two-dimensional adsorption properties of carbon dioxide and organic vapor[D].
covalent organic frameworks for carbon dioxide capture through Dalian: Dalian University of Technology (大连理工大学), 2014.
channel-wall functionalization[J]. Angewandte Chemie International [29] BELMABKHOUT Y, SAYARI A. Effect of pore expansion and
Edtion, 2015, 127(10): 3029-3033. amine functionalization of mesoporous silica on CO 2 adsorption over
[20] PATEL H A, JE S H, PARK J, et al. Unprecedented high-temperature a wide range of conditions[J]. Adsorption, 2009, 15: 318-328.
(上接第 1987 页) [54] ABUREL O M, PAVEL I Z, DĂNILĂ M D, et al. Pleiotropic effects
of eugenol: The good, the bad, and the unknown[J]. Oxidative
[46] YANG S, ZHU S, HONG R. Graphene oxide/polyaniline Medicine and Cellular Longevity, 2021: 3165159.
nanocomposites used in anticorrosive coatings for environmental [55] MAHAJAN M S, MAJULIKAR P P, GITE V V. Eugenol based
protection[J]. Coating, 2020, 10(12): 1215-1226. renewable polyols for development of 2K anticorrosive polyurethane
[47] DONG C D, ZHANG M X, XIANG E F, et al. Novel self-healing coatings[J]. Progress in Organic Coatings, 2020, 148: 105826.
anticorrosion coating based on L-valine and MBT-loaded halloysite [56] LEE J H, KIM S H, OH K W. Bio-based polyurethane foams with
nanotubes[J]. Journal of Materials Science, 2018, 53(10): 7793-7808. castor oil based multifunctional polyols for improved compressive
[48] TUHIN G, NIRANJAN K. Cashew nut shell liquid terminated properties[J]. Polymers, 2021, 13(4): 576-587.
self-healable polyurethane as an effective anticorrosive coating with [57] GURGEL D, BRESOLIN D, SAYER C, et al. Flexible polyurethane
biodegradable attribute[J]. Progress in Organic Coatings, 2020, 139: foams produced from industrial residues and castor oil[J]. Industrial
105472. Crops & Products, 2021, 164: 113377.
[49] LI T, ZHANG P Z, RONG M Z, et al. Self-healable and thiolene UV- [58] CHANDRASHEKHAR K P, HARISHCHANDRA D, JIRIMALI J,
curable waterborne polyurethane for anticorrosion coating[J]. Journal et al. Functional antimicrobial and anticorrosive polyurethane
of Applied Polymer Science, 2019, 136(26): 47700. composite coatings from algae oil and silver doped egg shell
[50] LI Z T (李治韬), CHENG Y (程原), ZHAO B B (赵本波), et al. hydroxyapatite for sustainable development[J]. Progress in Organic
Research progress of functional polyurethane in anticorrosive Coatings, 2019, 128: 127-136.
coatings[J]. Chinese Polymer Bulletin (高分子通报), 2019, 6: 10-17. [59] CAO Y D, LIU Z Z, ZHENG B X, et al. Synthesis of lignin-based
[51] LI J, HU Y R, QIU H X, et al. Coaxial electrospun fibres with polyols via thiol-ene chemistry for high-performance polyurethane
graphene oxide/PAN shells for self-healing waterborne polyurethane anticorrosive coating[J]. Composites Part B, 2020, 200: 108295.
coatings[J]. Progress in Organic Coatings, 2019, 131: 227-231. [60] LIANG H Y, LU Q M, LIU M H, et al. UV absorption, anticorrosion,
[52] LI J, FENG Q K, CUI J C, et al. Self-assembled graphene oxide and long-term antibacterial performance of vegetable oil based
microcapsules in Pickering emulsions for self-healing waterborne cationic waterborne polyurethanes enabled by amino acids[J].
polyurethane coatings[J]. Composites Science and Technology, 2017, Chemical Engineering Journal, 2020, 421(2): 127774.
151: 282-290. [61] ABD M E, ABDULRAHEIM M A H, MOHAMED K, et al.
[53] ULANOWSKA M, OLAS B. Biological properties and prospects for Nanocry-stalline cellulose as an eco-friendly reinforcing additive to
the application of eugenol—A review[J]. International Journal of polyurethane coating for augmented anticorrosive behavior[J].
Molecular Sciences, 2021, 22(7): 3671-3684. Carbohydrate Polymers, 2018, 183: 311-318.