Page 100 - 《精细化工》2021年第11期
P. 100
·2246· 精细化工 FINE CHEMICALS 第 38 卷
由图 9 可知,光照 60 min,质量浓度为 0.67 g/L 1 的实际应用提供了可行性。
的 0% Cd 0.5Zn 0.5S/MoO 3 对 MO 的降解率为 98.0%,
参考文献:
当体系中加入 BQ 后,MO 的降解率只有为 11.1%,
–
表明该光催化体系中•O 2 是主要的活性物质,与可见 [1] DONG H R, ZENG G M, TANG L, et al. An overview on limitations
of TiO 2-based particles for photocatalytic degradation of organic
光下 In 2 S 3 /In(OH) 3 体系催化降解 MO 的活性基团相 pollutants and the corresponding countermeasures[J]. Water Research,
同 [20] 。推断 Cd 0.5 Zn 0.5 S/MoO 3 复合材料光催化降解 2015, 79(1): 128-146.
[2] AYODHYA D, VEERABHADRAM G. A review on recent advances
MO 的过程 如图 10 所 示,即可见 光照射下, in photodegradation of dyes using doped and heterojunction based
Cd 0.5 Zn 0.5S/ MoO 3 中两个半导体都可以被激发,在各 semiconductor metal sulfide nanostructures for environmental
protection[J]. Materials Today Energy, 2018, 9: 83-113.
自的谱带上生成电子和空穴对,MoO 3 导带(CB) [3] SHAFI P M, DHANABAL R, CHIHAMBARARAJ A, et al.
中的电子与 Cd 0.5 Zn 0.5 S 的空穴复合,而分开的空穴 α-MnO 2/h-MoO 3 hybrid material for high performance
保留在 MoO 3 的价带(VB)中,MoO 3 和 Cd 0.5 Zn 0.5 S supercapacitor electrode and photocatalyst[J]. ACS Sustainable
Chemistry & Engineering, 2017, 5: 4757-4770.
间的这种界面电荷载流子复合导致 Cd 0.5 Zn 0.5 S 导带 [4] DE CASTRO I A, DATTA S R, OU J Z, et al. Molybdenum oxides
中的电子积累以及 MoO 3 价带中的空穴积累。这些 from fundamentals to functionality[J]. Advanced Materials, 2017,
29: 1-31.
分离的电子具有更高的还原性,与空气中的 O 2 反应 [5] CHITHAMBARARAJ A, SANJINI N S, VELMATHI S, et al.
–
产生•O 2 ,是降解 MO 的主要活性物质。同样,MoO 3 Preparation of h-MoO 3 and α-MoO 3 nanocrystals comparative study
on photocatalytic degradation of methylene blue under visible light
价带中的空穴与水分子反应产生•OH,也对 MO 的
irradiation[J]. Physical Chemistry Chemical Physics, 2013, 15(35):
降解有一定作用,这一反应机理与 Z 型 ZnIn 2S 4 /MoO 3 14761-14769.
异质结可见光下催化降解 MO、RhB 机理相似 [21] 。 [6] CHITHAMBARARAJ A, SANJINI N S, CHANDRA B A, et al.
Flower-like hierarchical h-MoO 3: New findings of efficient visible
light driven nanophotocatalyst for methylene blue degradation[J].
Catalysis Science & Technology, 2013, 3(5): 1405-1414.
[7] SHEN Z Y, CHEN G, YU Y G, et al. Sonochemistry synthesis of
nanocrystals embedded in a MoO 3-CdS core-shell photocatalyst with
enhanced hydrogen production and photodegradation[J]. Journal of
Materials Chemistry, 2012, 22(37): 19646-19651.
[8] ZHANG Y F, PARK S J. Formation of hollow MoO 3/SnS 2
heterostructured nanotubes for efficient light-driven hydrogen peroxide
production[J]. Journal of Materials Chemistry A, 2018, 6: 20304-
20312.
[9] TANG F (唐飞), DU D Q (杜多勤), TAN Y F (谭芸妃), et al.
Preparation and characterization of MoO 3-x hexagonal microrods as
high-efficiency photocatalysts[J]. Chinese Journal of Applied
Chemistry (应用化学), 2021, 38(1): 92-98.
[10] ZHONG M Z, WEI Z M, MENG X Q, et al. From MoS 2 microspheres to
α-MoO 3 nanoplates: Growth mechanism and photocatalytic activities[J].
图 10 10% Cd 0.5 Zn 0.5 S/MoO 3 光降解 MO 的示意图 European Journal of Inorganic Chemistry, 2014, 2014(20): 3245-3251.
Fig. 10 Photocatalytic degradation schematic of MO by [11] HSU Y Y, SUEN N T, CHANG C C, et al. Heterojunction of zinc
blende/wurtzite in Zn 1–xCd xS solid solution for efficient solar hydrogen
10% Cd 0.5 Zn 0.5 S/MoO 3
generation: X-ray absorption/diffraction/diffraction approaches[J].
American Chemical Society Division of Fuel Chemistry, 2015, 7:
3 结论 2255-2268.
[12] MEI Z W, ZHANG B K, ZHENG J X, et al. Tuning Cu dopant of
利用一锅水热法,通过 PVP 的交联作用制备了 Zn 0.5Cd 0.5S nanocrystals enables high-performance photocatalytic H 2
evolution from water splitting under visible-light irradiation[J]. Nano
Cd 0.5Zn 0.5S/MoO 3 复合材料,将其用于可见光下催化 Energy, 2016, 26: 405-416.
降解 MO。由于 PVP 对 MoO 3 部分还原得到表面有 [13] LI X L, HE R B, DAI Y J, et al. Design and fabrication of
Co 9S 8/Zn 0.5Cd 0.5S hollow nanocages with significantly enhanced
氧空位的 MoO 3–x ,而且改变了 Cd 0.5 Zn 0.5 S 的形貌, photocatalytic hydrogen production activity[J]. Chemical Engineering
Cd 0.5Zn 0.5S/MoO 3 复合材料有利于光生载流子的传 Journal, 2020, 400: 125474.
[14] WU Y, WANG H, TU W G, et al. Construction of hole-transported
递,光催化活性均高于 MoO 3 、Cd 0.5 Zn 0.5 S,其中,
MoO 3–x coupled with CdS nanospheres for boosting photocatalytic
10% Cd 0.5 Zn 0.5 S/MoO 3 的光催化活性最大。可见光照 performance via oxygen-defects-mediated Z-scheme charge transfer[J].
Applied Organometallic Chemistry, 2019, 33(4): 1-14.
射 60 min,质量浓度为 0.67 g/L 10% Cd 0.5Zn 0.5S/MoO 3
[15] PENG H C (彭慧琛), PENG S Q (彭绍琴), LI Y X (李越湘).
对 30 mL 质量浓度 10 mg/L MO 的降解率为 98.0%, Photocatalytic hydrogen evolution from water splitting using pollutants
–1
反应速率常数为 0.06725 min 。该复合材料制备方 as electron donors over Cd 0.5Zn 0.5S solid solution[J]. Journal of
Nanchang University (Natural Science) (南昌大学学报: 理科版),
法简单,不仅拓宽了 MoO 3 对可见光的吸收范围,
2016, 40(5): 465-468.
而且提高了其光催化活性,为 MoO 3 在光催化方面 (下转第 2267 页)