Page 100 - 《精细化工》2021年第11期
P. 100

·2246·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 由图 9 可知,光照 60 min,质量浓度为 0.67 g/L 1            的实际应用提供了可行性。
            的 0% Cd 0.5Zn 0.5S/MoO 3 对 MO 的降解率为 98.0%,
                                                               参考文献:
            当体系中加入 BQ 后,MO 的降解率只有为 11.1%,
                                 –
            表明该光催化体系中•O 2 是主要的活性物质,与可见                         [1]   DONG H R, ZENG G M, TANG L, et al. An overview on limitations
                                                                   of TiO 2-based particles for  photocatalytic degradation of organic
            光下 In 2 S 3 /In(OH) 3 体系催化降解 MO 的活性基团相                 pollutants and the corresponding countermeasures[J]. Water Research,
            同 [20] 。推断 Cd 0.5 Zn 0.5 S/MoO 3 复合材料光催化降解             2015, 79(1): 128-146.
                                                               [2]   AYODHYA D, VEERABHADRAM G. A review on recent advances
            MO 的过程 如图 10 所 示,即可见 光照射下,                             in photodegradation of dyes using doped and heterojunction based
            Cd 0.5 Zn 0.5S/ MoO 3 中两个半导体都可以被激发,在各                  semiconductor metal sulfide nanostructures for environmental
                                                                   protection[J]. Materials Today Energy, 2018, 9: 83-113.
            自的谱带上生成电子和空穴对,MoO 3 导带(CB)                         [3]   SHAFI P M, DHANABAL R, CHIHAMBARARAJ  A,  et al.
            中的电子与 Cd 0.5 Zn 0.5 S 的空穴复合,而分开的空穴                     α-MnO 2/h-MoO 3  hybrid  material  for  high  performance
            保留在 MoO 3 的价带(VB)中,MoO 3 和 Cd 0.5 Zn 0.5 S             supercapacitor electrode and photocatalyst[J]. ACS Sustainable
                                                                   Chemistry & Engineering, 2017, 5: 4757-4770.
            间的这种界面电荷载流子复合导致 Cd 0.5 Zn 0.5 S 导带                 [4]   DE CASTRO I A, DATTA S R, OU J Z, et al. Molybdenum oxides
            中的电子积累以及 MoO 3 价带中的空穴积累。这些                             from fundamentals to functionality[J]. Advanced Materials, 2017,
                                                                   29: 1-31.
            分离的电子具有更高的还原性,与空气中的 O 2 反应                         [5]   CHITHAMBARARAJ A, SANJINI  N S, VELMATHI S,  et al.
                   –
            产生•O 2 ,是降解 MO 的主要活性物质。同样,MoO 3                        Preparation of h-MoO 3 and α-MoO 3 nanocrystals comparative study
                                                                   on photocatalytic degradation of methylene blue under visible light
            价带中的空穴与水分子反应产生•OH,也对 MO 的
                                                                   irradiation[J]. Physical Chemistry Chemical Physics, 2013, 15(35):
            降解有一定作用,这一反应机理与 Z 型 ZnIn 2S 4 /MoO 3                   14761-14769.
            异质结可见光下催化降解 MO、RhB 机理相似                   [21] 。   [6]   CHITHAMBARARAJ A, SANJINI N S, CHANDRA  B A,  et al.
                                                                   Flower-like hierarchical  h-MoO 3: New findings  of efficient visible
                                                                   light driven  nanophotocatalyst for methylene blue degradation[J].
                                                                   Catalysis Science & Technology, 2013, 3(5): 1405-1414.
                                                               [7]   SHEN Z Y, CHEN G, YU Y G, et al. Sonochemistry synthesis of
                                                                   nanocrystals embedded in a MoO 3-CdS core-shell photocatalyst with
                                                                   enhanced hydrogen production and photodegradation[J]. Journal of
                                                                   Materials Chemistry, 2012, 22(37): 19646-19651.
                                                               [8]   ZHANG Y F, PARK S J. Formation of hollow MoO 3/SnS 2
                                                                   heterostructured nanotubes for efficient light-driven hydrogen peroxide
                                                                   production[J]. Journal of Materials Chemistry A, 2018, 6: 20304-
                                                                   20312.
                                                               [9]   TANG F (唐飞), DU D Q (杜多勤), TAN Y F (谭芸妃),  et al.
                                                                   Preparation and characterization of MoO 3-x hexagonal microrods as
                                                                   high-efficiency photocatalysts[J]. Chinese Journal  of Applied
                                                                   Chemistry (应用化学), 2021, 38(1): 92-98.
                                                               [10]  ZHONG M Z, WEI Z M, MENG X Q, et al. From MoS 2 microspheres to
                                                                   α-MoO 3 nanoplates: Growth mechanism and photocatalytic activities[J].

               图 10  10% Cd 0.5 Zn 0.5 S/MoO 3 光降解 MO 的示意图         European Journal of Inorganic Chemistry, 2014, 2014(20): 3245-3251.
            Fig. 10    Photocatalytic degradation schematic of MO by   [11]  HSU Y Y, SUEN N T, CHANG C C, et al. Heterojunction of zinc
                                                                   blende/wurtzite in Zn 1–xCd xS solid solution for efficient solar hydrogen
                    10% Cd 0.5 Zn 0.5 S/MoO 3
                                                                   generation: X-ray absorption/diffraction/diffraction approaches[J].
                                                                   American Chemical Society Division  of Fuel Chemistry, 2015,  7:
            3    结论                                                2255-2268.
                                                               [12]  MEI Z W, ZHANG B K, ZHENG J X, et al. Tuning Cu dopant of
                 利用一锅水热法,通过 PVP 的交联作用制备了                           Zn 0.5Cd 0.5S nanocrystals enables high-performance photocatalytic H 2
                                                                   evolution from water splitting under visible-light irradiation[J]. Nano
            Cd 0.5Zn 0.5S/MoO 3 复合材料,将其用于可见光下催化                    Energy, 2016, 26: 405-416.
            降解 MO。由于 PVP 对 MoO 3 部分还原得到表面有                     [13]  LI X L, HE  R  B, DAI Y J,  et al. Design and fabrication of
                                                                   Co 9S 8/Zn 0.5Cd 0.5S  hollow nanocages with significantly enhanced
            氧空位的 MoO 3–x ,而且改变了 Cd 0.5 Zn 0.5 S 的形貌,               photocatalytic hydrogen production activity[J]. Chemical Engineering
            Cd 0.5Zn 0.5S/MoO 3 复合材料有利于光生载流子的传                     Journal, 2020, 400: 125474.
                                                               [14]  WU Y, WANG H, TU W G, et al. Construction of hole-transported
            递,光催化活性均高于 MoO 3 、Cd 0.5 Zn 0.5 S,其中,
                                                                   MoO 3–x coupled with CdS nanospheres for  boosting photocatalytic
            10% Cd 0.5 Zn 0.5 S/MoO 3 的光催化活性最大。可见光照                performance via oxygen-defects-mediated Z-scheme charge transfer[J].
                                                                   Applied Organometallic Chemistry, 2019, 33(4): 1-14.
            射 60 min,质量浓度为 0.67 g/L 10% Cd 0.5Zn 0.5S/MoO 3
                                                               [15]  PENG H C (彭慧琛), PENG S Q (彭绍琴), LI  Y X  (李越湘).
            对 30 mL 质量浓度 10 mg/L MO 的降解率为 98.0%,                   Photocatalytic hydrogen evolution from water splitting using pollutants
                                      –1
            反应速率常数为 0.06725 min 。该复合材料制备方                          as electron donors over Cd 0.5Zn 0.5S  solid solution[J]. Journal of
                                                                   Nanchang University (Natural Science) (南昌大学学报:  理科版),
            法简单,不仅拓宽了 MoO 3 对可见光的吸收范围,
                                                                   2016, 40(5): 465-468.
            而且提高了其光催化活性,为 MoO 3 在光催化方面                                                       (下转第 2267 页)
   95   96   97   98   99   100   101   102   103   104   105