Page 112 - 《精细化工》2021年第11期
P. 112

·2258·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 由图 14、15 可知,峰位相互对应,但粗糙面反                          Philosophical Transactions of the Royal Society B:  Biological
            射率对比光滑面明显降低,表明粗糙面对光具有一                                 Sciences, 2017, 372(1724): 20160536.
                                                               [4]   AUBER L. The structures producing “non-iridescent” blue colour in
            定的屏蔽作用。两个面在 3~5 μm 均出现反射率峰                             bird feathers[C]//Proceedings of the Zoological Society of London.
            值,8~12  μm 相比其他区域反射率稍有提高,此结                            Oxford, UK: Blackwell Publishing Ltd., 1957, 129(4): 455-486.
                                                               [5]   JIANG L P (姜丽萍). Study on the mechanism of the structure color
            果可与模拟结构相对应,证明了模拟的正确性。                                  and gloss of beetles[D]. Shanghai: Fudan University (复旦大学), 2010.
                                                               [6]   WU W J (邬文俊). The optical characteristics and discoloration
            3    结论                                                mechanism of butterfly fin microna structure are studied[D]. Wuhan:
                                                                   Huazhong University of Science and Technolog (华中科技大学), 2012.
                (1)通过 SEM 对鲍鱼壳的横截面观察得出,                        [7]   LIU Y, SHIGLEY J E, HURWIT K N. Iridescence color of a shell of
                                                                   the mollusk Pinctada margaritifera caused by diffraction[J]. Optics
            鲍鱼壳珍珠层具有规律的周期性结构,通过中远反                                 Express, 1999, 4(5): 177-182.
            射率测试可知,在中远红外 6~8 μm 具有较高的反射                        [8]   BRINK D J, VAN DER BERG N G, BOTHA A J. Iridescent colors
            率,达到 49%。                                              on seashell: An optical and structural investigation of Helcion
                                                                   pruinosus[J]. Appl Opt, 2002, 41: 717-722.
                (2)使用 comsol5.4 软件构建数学模型,从层                    [9]   TAN  T L,  WONG D, LEE P. Iridescence of a shell of mollusk
            宽、折射率、层厚、周期 4 方面研究结构参数对反                               Haliotis Glabra[J]. Opt Express, 2004, 12 (20): 4847-4854.
                                                               [10]  ZHANG W G (张伟钢), WANG G (汪港),  YAN J (严俊),  et al.
            射率的影响,经过模型优化得到符合红外隐身的结                                 Unique optical reflection spectra of bivalve nacre  and its origin[J].
            构模型参数为空气层厚 2 μm 折射率为 1,材料层厚                            Spectroscopy and  Spectral Analysis  (光谱学和光谱分析), 2012,
            1.37 μm 折射率为 2,共 42 层的周期性结构。                           40(25): 12647-12648.
                                                               [11]  XIE C F (谢处方), RAO K J (饶克谨). Electromagnetic fields and
                (3)采用 PVA 树脂冷冻干燥循环构筑模拟模                            electromagnetic waves[M]. Beijing: Higher Education Press (高等教
            型的实物模型,通过优化工艺参数和 PVA 溶液的不                              育出版社), 1997.
                                                               [12]  MANN S  E, MIAOULIS I N, WONG P W. Spectral imaging,
            同质量分数,确定质量分数 10%的 PVA 溶液为树脂
                                                                   reflectivity measurements and modeling of iridescent butterfly scale
            基体得出的结构模型,在中远红外区域具有较高的                                 structures[J]. Optical Engineering, 2001, 40(10): 2061-2068.
            反射率,证明了模拟结构的正确性。                                   [13]  PLATTNER L. Optical properties of the scales of Morpho rhetenor
                                                                   butterflies: Theoretical and experimental investigation of the back-
            参考文献:                                                  scattering of light  in the visible spectrum[J]. Journal of the Royal
                                                                   Society Interface, 2004, 1(1): 49-59.
            [1]   BU X H (卜小海). Preparation and infrared radiation properties of   [14]  GE D B (葛德彪), YAN Y B (闫玉波). The method of limited
                 nanocomposites based on helical polyacetylene[D]. Nanjing: Southeast   difference in the time domain of electromagnetic waves[M]. Xi'an:
                 University (东南大学), 2015.                          Xi'an University of Electronic Science and Technology Press (西安
            [2]   SHAWKEY  M D, MOREHOUSE N I, VUKUSIC P.  A protean   电子科技大学出版社), 2005.
                 palette: Colour materials and mixing in birds and butterflies[J].   [15]  DEVILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build
                 Journal of the Royal Society Interface, 2009, 6(S2): S221-S231.     complex composites[J]. Science, 2006, 311(5760): 515-518.
            [3]   SHAWKEY M D, D'ALBA L. Interactions between colour-producing   [16]  DEVILLE S, SAIZ E, TOMSIA A P. Ice-templated porous alumina
                 mechanisms and their effects on the integumentary colour palette[J].     structures[J]. Acta Materialia, 2007, 55(6): 1965-1974.



            (上接第 2188 页)                                       [43]  FANG J H, MAO H F, WU J W, et al. The photovoltaic study of
                                                                   co-sensitized microporous TiO 2  electrode with porphyrin and
            [38]  LI X C, SHI J H, CHEN H, et al. A DFT study on the modification   phthalocyanine molecules[J]. Applied Surface Science, 1997,
                 mechanism of (Cr, C) co-doping  for the electronic and optical   119(3/4): 237-241.
                 properties of anatase TiO 2[J]. Computational Materials Science,   [44]  MENG W, WAN J M, HU Z W, et al. Preparation, characterization
                 2017, 129: 295-303.                               and visible-light-driven photocatalytic activity of a novel Fe(Ⅲ)
            [39]  PLIEKHOV O, PLIEKHOVA O, DONAR Y O,  et al.  Enhanced   porphyrin-sensitized TiO 2 nanotube photocatalyst[J]. Applied
                 photocatalytic activity of carbon and zirconium  modified TiO 2[J].   Surface Science, 2017, 391: 267-274.
                 Catalysis Today, 2017, 284: 215-220.          [45]  CHOWDHURY P, ATHAPATHTHU S, ELKAMEL  A,  et al.
            [40]  ZHANG J L (张金龙). Photocatalysis[M]. Shanghai:  East China   Visible-solar-light-driven  photo-reduction and removal of  cadmium
                 University of Science and Technology Press (华东理工大学出版社),   ion with Eosin  Y-sensitized TiO 2 in aqueous solution of
                 2012: 21-36.                                      triethanolamine[J].  Separation and  Purification Technology, 2017,
            [41]  ARABZADEH A,  SALIMI A. One dimensional CdS nanowire@   174: 109-115.
                 TiO 2 nanoparticles core-shell as high performance photocatalyst for   [46]  ZHU X D (朱晓东), WANG C X (王尘茜), LEI J H (雷佳浩), et al.
                 fast degradation of dye pollutants under visible and sunlight   Anatase-type silver-doped titanium dioxide ultraviolet  light and
                 irradiation[J]. Journal of Colloid and Interface Science, 2016, 479:   simulated sunlight photocatalytic properties[J].  Materials  Engineering
                 43-54.                                            (材料工程), 2020, 48(2): 59-64.
            [42]  HU X L, LU S C, TIAN J, et al. The selective deposition of MoS 2   [47]  OUYANG W Y, MUNOZ B M J, KUBACKA A, et al. Enhancing
                 nanosheets onto (101) facets of TiO 2 nanosheets with exposed (001)   photocatalytic performance of TiO 2 in H 2 evolution  via  Ru
                 facets  and their enhanced photocatalytic H 2 production[J]. Applied   co-catalyst deposition[J]. Applied Catalysis B: Environmental, 2018,
                 Catalysis B: Environmental, 2019, 241: 329-337.     238: 434-443.
   107   108   109   110   111   112   113   114   115   116   117