Page 112 - 《精细化工》2021年第11期
P. 112
·2258· 精细化工 FINE CHEMICALS 第 38 卷
由图 14、15 可知,峰位相互对应,但粗糙面反 Philosophical Transactions of the Royal Society B: Biological
射率对比光滑面明显降低,表明粗糙面对光具有一 Sciences, 2017, 372(1724): 20160536.
[4] AUBER L. The structures producing “non-iridescent” blue colour in
定的屏蔽作用。两个面在 3~5 μm 均出现反射率峰 bird feathers[C]//Proceedings of the Zoological Society of London.
值,8~12 μm 相比其他区域反射率稍有提高,此结 Oxford, UK: Blackwell Publishing Ltd., 1957, 129(4): 455-486.
[5] JIANG L P (姜丽萍). Study on the mechanism of the structure color
果可与模拟结构相对应,证明了模拟的正确性。 and gloss of beetles[D]. Shanghai: Fudan University (复旦大学), 2010.
[6] WU W J (邬文俊). The optical characteristics and discoloration
3 结论 mechanism of butterfly fin microna structure are studied[D]. Wuhan:
Huazhong University of Science and Technolog (华中科技大学), 2012.
(1)通过 SEM 对鲍鱼壳的横截面观察得出, [7] LIU Y, SHIGLEY J E, HURWIT K N. Iridescence color of a shell of
the mollusk Pinctada margaritifera caused by diffraction[J]. Optics
鲍鱼壳珍珠层具有规律的周期性结构,通过中远反 Express, 1999, 4(5): 177-182.
射率测试可知,在中远红外 6~8 μm 具有较高的反射 [8] BRINK D J, VAN DER BERG N G, BOTHA A J. Iridescent colors
率,达到 49%。 on seashell: An optical and structural investigation of Helcion
pruinosus[J]. Appl Opt, 2002, 41: 717-722.
(2)使用 comsol5.4 软件构建数学模型,从层 [9] TAN T L, WONG D, LEE P. Iridescence of a shell of mollusk
宽、折射率、层厚、周期 4 方面研究结构参数对反 Haliotis Glabra[J]. Opt Express, 2004, 12 (20): 4847-4854.
[10] ZHANG W G (张伟钢), WANG G (汪港), YAN J (严俊), et al.
射率的影响,经过模型优化得到符合红外隐身的结 Unique optical reflection spectra of bivalve nacre and its origin[J].
构模型参数为空气层厚 2 μm 折射率为 1,材料层厚 Spectroscopy and Spectral Analysis (光谱学和光谱分析), 2012,
1.37 μm 折射率为 2,共 42 层的周期性结构。 40(25): 12647-12648.
[11] XIE C F (谢处方), RAO K J (饶克谨). Electromagnetic fields and
(3)采用 PVA 树脂冷冻干燥循环构筑模拟模 electromagnetic waves[M]. Beijing: Higher Education Press (高等教
型的实物模型,通过优化工艺参数和 PVA 溶液的不 育出版社), 1997.
[12] MANN S E, MIAOULIS I N, WONG P W. Spectral imaging,
同质量分数,确定质量分数 10%的 PVA 溶液为树脂
reflectivity measurements and modeling of iridescent butterfly scale
基体得出的结构模型,在中远红外区域具有较高的 structures[J]. Optical Engineering, 2001, 40(10): 2061-2068.
反射率,证明了模拟结构的正确性。 [13] PLATTNER L. Optical properties of the scales of Morpho rhetenor
butterflies: Theoretical and experimental investigation of the back-
参考文献: scattering of light in the visible spectrum[J]. Journal of the Royal
Society Interface, 2004, 1(1): 49-59.
[1] BU X H (卜小海). Preparation and infrared radiation properties of [14] GE D B (葛德彪), YAN Y B (闫玉波). The method of limited
nanocomposites based on helical polyacetylene[D]. Nanjing: Southeast difference in the time domain of electromagnetic waves[M]. Xi'an:
University (东南大学), 2015. Xi'an University of Electronic Science and Technology Press (西安
[2] SHAWKEY M D, MOREHOUSE N I, VUKUSIC P. A protean 电子科技大学出版社), 2005.
palette: Colour materials and mixing in birds and butterflies[J]. [15] DEVILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build
Journal of the Royal Society Interface, 2009, 6(S2): S221-S231. complex composites[J]. Science, 2006, 311(5760): 515-518.
[3] SHAWKEY M D, D'ALBA L. Interactions between colour-producing [16] DEVILLE S, SAIZ E, TOMSIA A P. Ice-templated porous alumina
mechanisms and their effects on the integumentary colour palette[J]. structures[J]. Acta Materialia, 2007, 55(6): 1965-1974.
(上接第 2188 页) [43] FANG J H, MAO H F, WU J W, et al. The photovoltaic study of
co-sensitized microporous TiO 2 electrode with porphyrin and
[38] LI X C, SHI J H, CHEN H, et al. A DFT study on the modification phthalocyanine molecules[J]. Applied Surface Science, 1997,
mechanism of (Cr, C) co-doping for the electronic and optical 119(3/4): 237-241.
properties of anatase TiO 2[J]. Computational Materials Science, [44] MENG W, WAN J M, HU Z W, et al. Preparation, characterization
2017, 129: 295-303. and visible-light-driven photocatalytic activity of a novel Fe(Ⅲ)
[39] PLIEKHOV O, PLIEKHOVA O, DONAR Y O, et al. Enhanced porphyrin-sensitized TiO 2 nanotube photocatalyst[J]. Applied
photocatalytic activity of carbon and zirconium modified TiO 2[J]. Surface Science, 2017, 391: 267-274.
Catalysis Today, 2017, 284: 215-220. [45] CHOWDHURY P, ATHAPATHTHU S, ELKAMEL A, et al.
[40] ZHANG J L (张金龙). Photocatalysis[M]. Shanghai: East China Visible-solar-light-driven photo-reduction and removal of cadmium
University of Science and Technology Press (华东理工大学出版社), ion with Eosin Y-sensitized TiO 2 in aqueous solution of
2012: 21-36. triethanolamine[J]. Separation and Purification Technology, 2017,
[41] ARABZADEH A, SALIMI A. One dimensional CdS nanowire@ 174: 109-115.
TiO 2 nanoparticles core-shell as high performance photocatalyst for [46] ZHU X D (朱晓东), WANG C X (王尘茜), LEI J H (雷佳浩), et al.
fast degradation of dye pollutants under visible and sunlight Anatase-type silver-doped titanium dioxide ultraviolet light and
irradiation[J]. Journal of Colloid and Interface Science, 2016, 479: simulated sunlight photocatalytic properties[J]. Materials Engineering
43-54. (材料工程), 2020, 48(2): 59-64.
[42] HU X L, LU S C, TIAN J, et al. The selective deposition of MoS 2 [47] OUYANG W Y, MUNOZ B M J, KUBACKA A, et al. Enhancing
nanosheets onto (101) facets of TiO 2 nanosheets with exposed (001) photocatalytic performance of TiO 2 in H 2 evolution via Ru
facets and their enhanced photocatalytic H 2 production[J]. Applied co-catalyst deposition[J]. Applied Catalysis B: Environmental, 2018,
Catalysis B: Environmental, 2019, 241: 329-337. 238: 434-443.