Page 23 - 《精细化工》2021年第11期
P. 23
第 11 期 高党鸽,等: 柔性基电磁屏蔽材料的研究进展 ·2169·
性电子皮肤、电子器件中应用,研究工作的重点大 Materials Engineering (材料工程), 2020, 48(7): 14-23.
[17] CHEN Y J, LI Y, YIP M, et al. Electromagnetic interference
多都在电磁屏蔽性能。然而随着柔性基电磁屏蔽材
shielding efficiency of polyaniline composites filled with graphene
料的长期使用,会使其弯折、磨损、甚至断裂,导 decorated with metallic nanoparticles[J]. Composites Science and
致材料的导电性能以及电磁屏蔽性能大大下降。笔 Technology, 2013, 43(13): 2183-2188.
[18] WANG Z, MAO B Y, WANG Q L, et al. Ultrahigh conductive
者认为若将自修复功能引入柔性基电磁屏蔽材料的 copper/large flake size graphene heterostructure thin-film with
设计与制备过程,将有利于提高材料的耐久性及稳 remarkable electromagnetic interference shielding effectiveness[J].
Small, 2018, 14(20): 225-230.
定性。 [19] LEE H, KIM M, KIM I, et al. Flexible and stretchable optoelectronic
devices using silver nanowires and graphene[J]. Advanced Materials,
参考文献: 2016, 28(22): 4541-4548.
[20] CHEN Y, WANG Y L, ZHANG H B, et al. Enhanced electromagnetic
[1] JOO J, LEE C Y. High frequency electromagnetic interference
shielding response of mixtures and multilayer films based on interference shielding efficiency of polystyrene/graphene composites
conducting polymers[J]. Journal of Applied Physics, 2000, 88(1): with magnetic Fe 3O 4 nanoparticles[J]. Carbon, 2015, 82: 67-76.
513-518. [21] WU Y, WANG Z Y, LIU X, et al. Ultralight graphene foam/
[2] LU Y W (鲁亚稳), ZHAO X M (赵晓明). Research status and conductive polymer composites for exceptional electromagnetic
interference shielding[J]. ACS Applied Materials & Interfaces, 2017,
influencing factors of electromagnetic[J]. Journal of Chengdu Textile
9(10): 9059-9069.
College (成都纺织高等专科学校学报), 2016, 33(3): 206-210. [22] ZHOU E Z, XI J B, GUO Y, et al. Synergistic effect of graphene and
[3] WANG K L (王昆仑). Hazards of electromagnetic radiation and the carbon nanotube for high-performance electromagnetic interference
development trend of anti-radiation fiber[J]. Biotechnology world
shielding films[J]. Carbon, 2018, 133: 316-322.
Material (生物技术世界), 2015, 97(12): 268-274. [23] HUANG Y (黄勇), CHEN S Y (陈善勇), LIU J H (刘俊红).
[4] CHEN M T, ZHANG L, DUAN S S, et al. Highly conductive and Application progress of conductive packing for conductive composite
flexible polymer composites with improved mechanical and rubber[J]. Yunnan Chemical Technology (云南化工), 2009, 36(5):
electromagnetic interference shielding performances[J]. Nanoscale, 52-56.
2014, 6(7): 3796-3803. [24] JIA Y (贾园), YANG J X (杨菊香), SHI R F (师瑞峰), et al.
[5] CHAUDHARY A, KUMARI S, KUMAR R, et al. Lightweight and Research progress on conductive polymer materials[J]. Engineering
easily foldable MCMB-MWCNTs composite paper with exceptional Plastic Application (工程塑料应用), 2021, 49(2): 167-171.
electromagnetic interference shielding[J]. ACS Applied Materials & [25] SUN Y B (孙业斌), ZHANG X M (张新民). Research progress of
Interfaces, 2016, 8(16): 10600-10608. filling-type conductive polymer material[J]. Special Rubber Products
[6] JAMADADE S, JADHAV S V, PURI V. Electromagnetic reflection, (特种橡胶制品), 2009, 30(3): 73-78.
shielding and conductivity of polypyrrole thin film electropolymerized [26] WANG J Y (王建颖), GUO X M (郭晓明), LI Y X (李艳霞), et al.
in p-tulensulfonic acid[J]. Journal of Non-Crystalline Solids, 2011, Study on LDPE/EPM/carbon black conductive composite material[J].
357(3): 1177-1181. Engineering Plastic Application (工程塑料应用), 2004, 32(7): 15-18.
[7] LIN H B (林鸿宾), LU W S (陆万顺). Electromagnetic shielding [27] FU Q F (傅青方). Study on the electronic characteristics of deformed
principle and electromagnetic shielding glass[J]. Glass (玻璃), 2019, single-walled carbon nanotubes[D]. Wuxi: Southern University (江南
43(10): 264-281. 大学), 2011.
[8] SHI J H (施建花). Principle and application of electromagnetic [28] LI X (李新), LU P (陆萍), WANG L H (汪立海). The application
shield[J]. Modern Economic Information (现代经济信息), 2015,(24): progress of conductive polymer in electromagnetic shielding
304-312. material[J]. Guangdong Chemical Industry (广东化工), 2018, 45(6):
[9] COUTINHO F M B, DELPECH M C. Some properties of films cast 133-134.
from polyurethane aqueous dispersions of polyether-based anionomer [29] LIU Z Q (刘展晴). Research progress of polyacetylene conductive
extended with hydrazine[J]. Polymer Testing, 1996, 15(2): 103-113. materials[J]. Aging and Application of Synthetic Materials (合成材
[10] RAMÍEZ S, FERREIRA D, GOTTBERG V, et al. Adding a 料老化与应用), 2018, 47(3): 100-104.
micropore framework to a parent activated carbon by carbon [30] ZHANG J F (张建峰), CAO H Y (曹惠杨), WANG H B (王红兵).
deposition from methane or ethylene[J]. Carbon, 2003, 41(13): Research progress of new two-dimensional material MXene[J].
2653-2655. Journal of Inorganic Materials ( 无机材料学报 ), 2017, 32(6):
[11] WU Z P, CHENG D M, MA W J, et al. Electromagnetic interference 561-570.
shielding effectiveness of composite carbon nanotube macro-film at a [31] WANG Y T, PENG H L, LI T T, et al. Lightweight, flexible and
high frequency range of 40 GHz to 60 GHz[J]. AIP Advances, 2015, superhydrophobic conductive composite films based on
5(6): 067130-067140. layer-by-layer self-assembly for high-performance electromagnetic
[12] SNOEK J L. Dispersion and absorption in magnetic ferrites at interference shielding[J]. Composites Part A: Applied Science and
frequencies above one MC/S[J]. Physica, 1948, 14(4): 207-217. Manufacturing, 2021, 141: 106199.
[13] OH J H, OH K S, KIM C G, et al. Design of radar absorbing [32] HU D W, HUANG X Y, LI S T, et al. Flexible and durable
structures using glass/epoxy composite containing carbon black in cellulose/MXene nanocomposite paper for efficient electromagnetic
X-band frequency ranges[J]. Composites Part B, 2004, 35(1): 49-56. interference shielding[J]. Composites Science and Technology, 2020,
[14] LI X H, YI H B, ZHANG J W, et al. Fe 3O 4-graphene hybrids: 188: 107995.
Nanoscale characterization and their enhanced electromagnetic wave [33] HUANG J T. Electromagnetic shielding effectiveness and electrical
absorption in gigahertz range[J]. Journal of Nanoparticle Research, conductivity of a thin silver layer deposited onto cellulose film via
2013, 15(3): 25-30. electroless plating[J]. Journal of Materials Science: Materials in
[15] ZHAO S, ZHANG H B, LUO J Q, et al. Highly electrically Electronics, 2019, 30(13): 12044-12053.
conductive three-dimensional Ti 3C 2T x MXene/reduced graphene [34] GAO Y N, WANG Y, YUE T N, et al. Multifunctional cotton
oxide hybrid aerogels with excellent electromagnetic interference non-woven fabrics coated with silver nanoparticles and polymers for
shielding performances[J]. ACS Nano, 2018, 12(11): 16-22. antibacterial, superhydrophobic and high performance microwave
[16] QIAN W (钱伟), HE D P (何大平), LI B W (李宝文). Research shielding[J]. Journal of Colloid and Interface Science, 2021, 58(2):
progress of the graphene-based electromagnetic shielding material[J]. 112-123.