Page 23 - 《精细化工》2021年第11期
P. 23

第 11 期                         高党鸽,等:  柔性基电磁屏蔽材料的研究进展                                   ·2169·


            性电子皮肤、电子器件中应用,研究工作的重点大                                 Materials Engineering (材料工程), 2020, 48(7): 14-23.
                                                               [17]  CHEN  Y J, LI Y, YIP M,  et al. Electromagnetic  interference
            多都在电磁屏蔽性能。然而随着柔性基电磁屏蔽材
                                                                   shielding efficiency of polyaniline composites filled with graphene
            料的长期使用,会使其弯折、磨损、甚至断裂,导                                 decorated with metallic nanoparticles[J]. Composites  Science and
            致材料的导电性能以及电磁屏蔽性能大大下降。笔                                 Technology, 2013, 43(13): 2183-2188.
                                                               [18]  WANG  Z, MAO  B Y, WANG Q L,  et al. Ultrahigh conductive
            者认为若将自修复功能引入柔性基电磁屏蔽材料的                                 copper/large flake size graphene heterostructure thin-film with
            设计与制备过程,将有利于提高材料的耐久性及稳                                 remarkable electromagnetic interference shielding effectiveness[J].
                                                                   Small, 2018, 14(20): 225-230.
            定性。                                                [19]  LEE H, KIM M, KIM I, et al. Flexible and stretchable optoelectronic
                                                                   devices using silver nanowires and graphene[J]. Advanced Materials,
            参考文献:                                                  2016, 28(22): 4541-4548.
                                                               [20]  CHEN Y, WANG Y L, ZHANG H B, et al. Enhanced electromagnetic
            [1]   JOO J, LEE C Y. High frequency  electromagnetic interference
                 shielding response of mixtures and  multilayer films based on   interference shielding efficiency of polystyrene/graphene composites
                 conducting polymers[J]. Journal of Applied Physics, 2000, 88(1):     with magnetic Fe 3O 4 nanoparticles[J]. Carbon, 2015, 82: 67-76.
                 513-518.                                      [21]  WU Y, WANG Z Y, LIU X,  et al. Ultralight graphene foam/
            [2]   LU  Y W (鲁亚稳), ZHAO X M (赵晓明). Research status and   conductive polymer composites for exceptional electromagnetic
                                                                   interference shielding[J]. ACS Applied Materials & Interfaces, 2017,
                 influencing factors of electromagnetic[J]. Journal of Chengdu Textile
                                                                   9(10): 9059-9069.
                 College (成都纺织高等专科学校学报), 2016, 33(3): 206-210.   [22]  ZHOU E Z, XI J B, GUO Y, et al. Synergistic effect of graphene and
            [3]   WANG K L (王昆仑). Hazards of electromagnetic radiation and the   carbon nanotube for high-performance electromagnetic interference
                 development trend of anti-radiation fiber[J]. Biotechnology world
                                                                   shielding films[J]. Carbon, 2018, 133: 316-322.
                 Material (生物技术世界), 2015, 97(12): 268-274.     [23]  HUANG Y (黄勇), CHEN S Y (陈善勇), LIU J H (刘俊红).
            [4]   CHEN M T, ZHANG L, DUAN S S, et al. Highly conductive and   Application progress of conductive packing for conductive composite
                 flexible polymer composites with improved mechanical and   rubber[J]. Yunnan Chemical  Technology (云南化工), 2009, 36(5):
                 electromagnetic interference shielding performances[J].  Nanoscale,   52-56.
                 2014, 6(7): 3796-3803.                        [24] JIA  Y  (贾园), YANG J X (杨菊香), SHI R F (师瑞峰),  et al.
            [5]   CHAUDHARY A, KUMARI S, KUMAR R, et al. Lightweight and   Research progress on conductive polymer materials[J]. Engineering
                 easily foldable MCMB-MWCNTs composite paper with exceptional   Plastic Application (工程塑料应用), 2021, 49(2): 167-171.
                 electromagnetic interference shielding[J].  ACS  Applied Materials  &   [25]  SUN Y B (孙业斌), ZHANG X M (张新民). Research progress of
                 Interfaces, 2016, 8(16): 10600-10608.             filling-type conductive polymer material[J]. Special Rubber Products
            [6]   JAMADADE S, JADHAV S V, PURI V. Electromagnetic reflection,   (特种橡胶制品), 2009, 30(3): 73-78.
                 shielding and conductivity of polypyrrole thin film electropolymerized   [26]  WANG J Y (王建颖), GUO X M (郭晓明), LI Y X (李艳霞), et al.
                 in  p-tulensulfonic acid[J]. Journal of Non-Crystalline Solids, 2011,   Study on LDPE/EPM/carbon black conductive composite material[J].
                 357(3): 1177-1181.                                Engineering Plastic Application (工程塑料应用), 2004, 32(7): 15-18.
            [7]   LIN H  B (林鸿宾), LU W S (陆万顺). Electromagnetic  shielding   [27]  FU Q F (傅青方). Study on the electronic characteristics of deformed
                 principle and electromagnetic shielding glass[J]. Glass (玻璃), 2019,   single-walled carbon nanotubes[D]. Wuxi: Southern University (江南
                 43(10): 264-281.                                  大学), 2011.
            [8]   SHI J H (施建花). Principle and application of electromagnetic   [28]  LI X (李新),  LU P (陆萍), WANG L H (汪立海). The application
                 shield[J]. Modern Economic Information (现代经济信息), 2015,(24):   progress  of conductive polymer in electromagnetic shielding
                 304-312.                                          material[J]. Guangdong Chemical Industry (广东化工), 2018, 45(6):
            [9]   COUTINHO F M B, DELPECH M C. Some properties of films cast   133-134.
                 from polyurethane  aqueous dispersions of polyether-based anionomer   [29]  LIU Z Q (刘展晴). Research progress of polyacetylene conductive
                 extended with hydrazine[J]. Polymer Testing, 1996, 15(2): 103-113.   materials[J]. Aging and Application of Synthetic Materials (合成材
            [10]  RAMÍEZ S, FERREIRA D, GOTTBERG V,  et al. Adding  a   料老化与应用), 2018, 47(3): 100-104.
                 micropore framework to a parent activated carbon by carbon   [30]  ZHANG J F (张建峰), CAO H Y (曹惠杨), WANG H B (王红兵).
                 deposition from  methane or ethylene[J]. Carbon, 2003, 41(13):   Research progress of new two-dimensional material  MXene[J].
                 2653-2655.                                        Journal of Inorganic Materials ( 无机材料学报 ), 2017, 32(6):
            [11]  WU Z P, CHENG D M, MA W J, et al. Electromagnetic interference   561-570.
                 shielding effectiveness of composite carbon nanotube macro-film at a   [31]  WANG  Y T, PENG H L, LI T  T,  et al. Lightweight, flexible and
                 high frequency range of 40 GHz to 60 GHz[J]. AIP Advances, 2015,   superhydrophobic  conductive  composite  films  based  on
                 5(6): 067130-067140.                              layer-by-layer self-assembly for high-performance electromagnetic
            [12]  SNOEK J L. Dispersion and absorption in magnetic ferrites at   interference shielding[J]. Composites Part A: Applied Science  and
                 frequencies above one MC/S[J]. Physica, 1948, 14(4): 207-217.   Manufacturing, 2021, 141: 106199.
            [13]  OH J H, OH K S, KIM C G,  et al.  Design of radar absorbing   [32]  HU D W, HUANG X Y,  LI S T,  et al. Flexible and durable
                 structures using  glass/epoxy composite containing carbon black in   cellulose/MXene nanocomposite paper for efficient electromagnetic
                 X-band frequency ranges[J]. Composites Part B, 2004, 35(1): 49-56.   interference shielding[J]. Composites Science and Technology, 2020,
            [14]  LI X H, YI H B, ZHANG J W, et  al. Fe 3O 4-graphene hybrids:   188: 107995.
                 Nanoscale characterization and their enhanced electromagnetic wave   [33]  HUANG J T. Electromagnetic shielding effectiveness and electrical
                 absorption in gigahertz range[J]. Journal of Nanoparticle Research,   conductivity of a thin silver layer deposited onto cellulose film via
                 2013, 15(3): 25-30.                               electroless plating[J]. Journal of Materials Science: Materials in
            [15]  ZHAO S, ZHANG H  B,  LUO J  Q, et al. Highly  electrically   Electronics, 2019, 30(13): 12044-12053.
                 conductive three-dimensional Ti 3C 2T x MXene/reduced graphene   [34]  GAO  Y N, WANG Y,  YUE T N,  et al. Multifunctional cotton
                 oxide hybrid aerogels with excellent  electromagnetic interference   non-woven fabrics coated with silver nanoparticles and polymers for
                 shielding performances[J]. ACS Nano, 2018, 12(11): 16-22.   antibacterial, superhydrophobic and high performance  microwave
            [16]  QIAN W (钱伟),  HE D P (何大平), LI B W (李宝文). Research   shielding[J]. Journal of Colloid and Interface Science, 2021, 58(2):
                 progress of the graphene-based electromagnetic shielding material[J].   112-123.
   18   19   20   21   22   23   24   25   26   27   28