Page 24 - 《精细化工》2021年第11期
P. 24

·2170·                            精细化工   FINE CHEMICALS                                 第 38 卷

            [35]  YANG Y B (杨耀彬), SUN L N (苏丽娜), WANG E  N (王婀娜),   [54]  ZHAN J Z (詹建朝), ZHANG H (张辉), SHEN L P (沈兰萍). Study
                 et al. Research progress of the application of layered self-assembly   on electroless  silver plating electromagnetic shielding fabrics with
                 technology[J]. Chemical World (化学世界), 2014, 55(10): 636-640.   different weight gain rates[J]. Surface Technology (表面技术), 2006,
            [36]  ZHANG Y, TIAN W X, LIU L X, et al. Eco-friendly flame retardant   35(3): 25-27.
                 and electromagnetic interference shielding cotton fabrics with   [55]  GAN X P (甘雪萍), HU W B (胡文彬), ZHANG Q Q (张青青), et
                 multi-layered coatings[J]. Chemical Engineering Journal, 2019, 372:   al. Development status of electromagnetic wave shielding fabric[J].
                 1077-1090.                                        Surface Technology (表面技术), 2006, 35(6): 48-50.
            [37]  SONG  W L, FAN, L Z,  HOU Z L,  et al. A wearable  microwave   [56]  HAN E G, KIM  E A, OH  K W.  Electromagnetic interference
                 absorption cloth[J]. Journal of Materials Chemistry C, 2017, 5(15):   shielding effectiveness of electroless Cu-plated PET fabrics[J].
                 2432-2441.                                        Synthetic Metals, 2001, 123(3): 469-476.
            [38]  YANG X M (杨小敏), LIU J P (刘建平), HAN J X (汉京霞), et al.   [57]  GUO R H, JIANG S X,  YUEN C W M,  et al. Optimization of
                 Preparation of polyaniline emulsions doped with hydrochloric acid   electroless nickel plating on polyester fabric[J]. Fibers and Polymers,
                 by chemical oxidation[J]. Journal of East China Jiaotong University   2013, 14(3): 459-464.
                 (华东交通大学学报), 2006, 35(1): 161-163.             [58]  ALI A, BAHETI  V,  VIK M,  et al.  Copper electroless plating of
            [39]  LI X X (李晓霞), XU P C (许鹏程). Effect of doping sulfuric acid   cotton fabrics after surface activation with deposition of silver and
                 concentration on  properties of polyaniline film[J].  Electronic   copper nanoparticles[J]. Journal of Physics and Chemistry of Solids,
                 Components and Materials (电子元件与材料), 2006, 25(3): 27-29.   2020, 137: 109181.
            [40]  KIM B J, OH S G, HAN M G, et al. Synthesis and characterization of   [59] CHEN Y (陈颖), GAO X S (高绪珊), TONG Y (童俨). Preparation
                 polyaniline nanoparticles in SDS micellar solutions[J]. Synthetic   of graphite-based electromagnetic shield coating fabrics[J].  Textile
                 Metals, 2001, 122(2): 297-304.                    industry and Technology (轻纺工业与技术), 2012, 41(5): 16-18.
            [41]  BOONCHU C, KANE-MAGUIRE L, WALLACE G G. The effect of   [60]  JIA L C, ZHANG  G Q,  XU L,  et al. Robustly superhydrophobic
                 added water on the conformation of optically active polyaniline in   conductive textile for efficient electromagnetic interference shielding[J].
                 organic solvents[J]. Synthetic Metals, 2003, 135(25): 241-242.   ACS Applied Materials & Interfaces, 2018, 11(1): 1680-1688.
            [42]  GOPAKUMAR D  A, PAI A R,  BEERAN P Y, et  al. Cellulose   [61]  ORTLEK H G,  SARACOGLU O G, SARITAS  O,  et al.
                 nanofiber-based polyaniline flexible papers as sustainable microwave   Electromagnetic shielding characteristics of woven fabrics made of
                 absorbers in the X-band[J]. ACS Applied Materials & Interfaces,   hybrid yarns containing metal  wire[J]. Fibers & Polymers, 2012,
                 2018, 10(23): 20032-20043.                        13(1): 63-67.
            [43]  OMURA T, CHAN C H, WAKISAKA M, et al. Organic thin paper of   [62]  JIANG S J (蒋少军), WU H L (吴红玲). Characteristics of carbon
                 cellulose nanofiber/polyaniline doped  with (±)-10-camphorsulfonic   fiber and its application in industrial textiles[J]. Non Woven Fabric
                 acid nanohybrid and its application to electromagnetic shielding[J].   (非织造布), 2003, 11(2): 31-33.
                 ACS Omega, 2019, 4(5): 9446-9452.             [63]  WANG L J (王立军), ZHAO F (赵峰). Effects of pamam dendritic
            [44]  LEE T W, LEE S E, JEONG Y G. Highly effective electromagnetic   graft on interfacial properties of carbon fiber composites[J]. The
                 interference shielding materials based on silver nanowire/cellulose   Journal of New Industrialization (新型工业化), 2017, 6(8): 89-91.
                 papers[J]. ACS Applied Materials & Interfaces, 2016, 8(20):   [64] ZHANG H Y (张洪艳), WANG H Q (王海泉), CHEN X Q (陈秀
                 13123-13132.                                      琴),  et al. Structure,  application and surface treatment of spiral
            [45]  CHEN  Y M, PANG L, LI Y, et al.  Ultra-thin and highly flexible   carbon fiber[J]. Journal of Weifang College (潍坊学院学报), 2018,
                 cellulose nanofiber/silver nanowire conductive paper for effective   18(2): 27-31.
                 electromagnetic interference shielding[J]. Composites Part A:   [65]  QIU J, QIU T T. Fabrication and microwave absorption properties of
                 Applied Science and Manufacturing, 2020, 135: 105960.   magnetite nanoparticle-carbon nanotube-hollow carbon fiber
            [46]  ZHANG Y X (张永翔), SUN X G (孙晓刚), PANG Z P (庞志鹏),   composites[J]. Carbon, 2015, 81(6): 20-28.
                 et al. Study on carbon nano tube/cellulose fiber composite paper and   [66]  YE W (叶伟), WU C B (吴程斌), SUN Q  L (孙启龙),  et al.
                 its electromagnetic shielding properties[J]. New Chemical Materials   Preparation and properties of carbon fiber-based magnetic absorption
                 (化工新型材料), 2017, 45(9): 77-79.                     composites[J]. China Textile Leader (纺织导报), 2018, (12): 69-72.
            [47]  IMAI M, AKIYAMA K, TANAKA T,  et al. Highly strong and   [67]  LIU  C, WANG  X L, HUANG X,  et al. Absorption and reflection
                 conductive carbon nanotube/cellulose composite paper[J]. Composites   contributions  to the high  performance of electromagnetic waves
                 Science and Technology, 2010, 70(10): 1564-1570.   shielding materials fabricated by compositing leather  matrix with
            [48]  CHEN X Y (程晓圆). Preparation and application of carbon  nano   metal nanoparticles[J]. ACS Applied Materials & Interfaces, 2018,
                 tube disusion[D]. Nanchang: Nanchang University (南昌大学), 2015.   10(16): 14036-14044.
            [49]  CAO W  T,  CHEN F F, ZHU Y J,  et al. Binary strengthening and   [68]  LIU C, WANG X L, HUANG X, et al. Collagen fiber membrane as
                 toughening of MXene/cellulose nanofiber composite paper with   an absorptive substrate to coat with carbon nanotubes-encapsulated
                 nacre-inspired structure and superior electromagnetic interference   metal nanoparticles for lightweight, wearable,  and absorption-
                 shielding properties[J]. ACS Nano, 2018, 12(5): 4583-4593.   dominated shielding membrane[J]. Industrial &  Engineering
            [50]  ZHOU B, ZHANG Z, LI Y L,  et al. Flexible, robust and   Chemistry Research, 2017, 56(30): 8553-8562.
                 multifunctional electromagnetic interference shielding film with   [69]  ZENG S, HUANG Z X, JIANG H, et al. From waste to wealth: A
                 alternating cellulose nanofiber and MXene layers[J]. ACS Applied   lightweight and  flexible  leather solid waste/polyvinyl alcohol/
                 Materials & Interfaces, 2020, 12(4): 4895-4905.   silver  paper for  highly efficient electromagnetic interference
            [51]  ACHARYA S, ALEGAONKAR P, DATAR S. Effect of formation of   shielding[J]. ACS Applied Materials  & Interfaces, 2020, 12(46):
                 heterostructure of SrA l4Fe 8O 19/RGO/PVDF on the microwave   52038-52049.
                 absorption  properties of the composite[J]. Chemical Engineering   [70]  GANGOPADHYAY R, DE A. Conducting polymer nanocomposites:
                 Journal, 2019, 374: 144-154.                      A brief overview[J]. Chemistry of Materials, 2000, 12(3): 608-622.
            [52]  MEI X K, LU L S, XIE Y X, et al. Preparation of flexible carbon   [71]  MA J J, ZHAN M S, WANG K.  Ultralightweight silver nanowires
                 fiber fabrics with adjustable  surface wettability for high-efficiency   hybrid  polyimide  composite  foams  for  high-performance
                 electromagnetic interference shielding[J]. ACS Applied Materials &   electromagnetic interference shielding[J]. ACS Applied Materials &
                 Interfaces, 2020, 12(43): 49030-49041.            Interfaces, 2015, 7(1): 563-576.
            [53]  ZHANG M C, WANG C Y, LIANG X P, et al. Weft-knitted fabric for   [72]  SUN R H (孙任辉). Study on  preparation and performance of
                 a highly stretchable and low-voltage  wearable heater[J]. Advanced   hybridized materials based on 2D nanosphere[D]. Beijing: Beijing
                 Electronic Materials, 2018, 3(9): 1700193.        University of Chemical Technology (北京化工大学), 2017.
   19   20   21   22   23   24   25   26   27   28   29