Page 24 - 《精细化工》2021年第11期
P. 24
·2170· 精细化工 FINE CHEMICALS 第 38 卷
[35] YANG Y B (杨耀彬), SUN L N (苏丽娜), WANG E N (王婀娜), [54] ZHAN J Z (詹建朝), ZHANG H (张辉), SHEN L P (沈兰萍). Study
et al. Research progress of the application of layered self-assembly on electroless silver plating electromagnetic shielding fabrics with
technology[J]. Chemical World (化学世界), 2014, 55(10): 636-640. different weight gain rates[J]. Surface Technology (表面技术), 2006,
[36] ZHANG Y, TIAN W X, LIU L X, et al. Eco-friendly flame retardant 35(3): 25-27.
and electromagnetic interference shielding cotton fabrics with [55] GAN X P (甘雪萍), HU W B (胡文彬), ZHANG Q Q (张青青), et
multi-layered coatings[J]. Chemical Engineering Journal, 2019, 372: al. Development status of electromagnetic wave shielding fabric[J].
1077-1090. Surface Technology (表面技术), 2006, 35(6): 48-50.
[37] SONG W L, FAN, L Z, HOU Z L, et al. A wearable microwave [56] HAN E G, KIM E A, OH K W. Electromagnetic interference
absorption cloth[J]. Journal of Materials Chemistry C, 2017, 5(15): shielding effectiveness of electroless Cu-plated PET fabrics[J].
2432-2441. Synthetic Metals, 2001, 123(3): 469-476.
[38] YANG X M (杨小敏), LIU J P (刘建平), HAN J X (汉京霞), et al. [57] GUO R H, JIANG S X, YUEN C W M, et al. Optimization of
Preparation of polyaniline emulsions doped with hydrochloric acid electroless nickel plating on polyester fabric[J]. Fibers and Polymers,
by chemical oxidation[J]. Journal of East China Jiaotong University 2013, 14(3): 459-464.
(华东交通大学学报), 2006, 35(1): 161-163. [58] ALI A, BAHETI V, VIK M, et al. Copper electroless plating of
[39] LI X X (李晓霞), XU P C (许鹏程). Effect of doping sulfuric acid cotton fabrics after surface activation with deposition of silver and
concentration on properties of polyaniline film[J]. Electronic copper nanoparticles[J]. Journal of Physics and Chemistry of Solids,
Components and Materials (电子元件与材料), 2006, 25(3): 27-29. 2020, 137: 109181.
[40] KIM B J, OH S G, HAN M G, et al. Synthesis and characterization of [59] CHEN Y (陈颖), GAO X S (高绪珊), TONG Y (童俨). Preparation
polyaniline nanoparticles in SDS micellar solutions[J]. Synthetic of graphite-based electromagnetic shield coating fabrics[J]. Textile
Metals, 2001, 122(2): 297-304. industry and Technology (轻纺工业与技术), 2012, 41(5): 16-18.
[41] BOONCHU C, KANE-MAGUIRE L, WALLACE G G. The effect of [60] JIA L C, ZHANG G Q, XU L, et al. Robustly superhydrophobic
added water on the conformation of optically active polyaniline in conductive textile for efficient electromagnetic interference shielding[J].
organic solvents[J]. Synthetic Metals, 2003, 135(25): 241-242. ACS Applied Materials & Interfaces, 2018, 11(1): 1680-1688.
[42] GOPAKUMAR D A, PAI A R, BEERAN P Y, et al. Cellulose [61] ORTLEK H G, SARACOGLU O G, SARITAS O, et al.
nanofiber-based polyaniline flexible papers as sustainable microwave Electromagnetic shielding characteristics of woven fabrics made of
absorbers in the X-band[J]. ACS Applied Materials & Interfaces, hybrid yarns containing metal wire[J]. Fibers & Polymers, 2012,
2018, 10(23): 20032-20043. 13(1): 63-67.
[43] OMURA T, CHAN C H, WAKISAKA M, et al. Organic thin paper of [62] JIANG S J (蒋少军), WU H L (吴红玲). Characteristics of carbon
cellulose nanofiber/polyaniline doped with (±)-10-camphorsulfonic fiber and its application in industrial textiles[J]. Non Woven Fabric
acid nanohybrid and its application to electromagnetic shielding[J]. (非织造布), 2003, 11(2): 31-33.
ACS Omega, 2019, 4(5): 9446-9452. [63] WANG L J (王立军), ZHAO F (赵峰). Effects of pamam dendritic
[44] LEE T W, LEE S E, JEONG Y G. Highly effective electromagnetic graft on interfacial properties of carbon fiber composites[J]. The
interference shielding materials based on silver nanowire/cellulose Journal of New Industrialization (新型工业化), 2017, 6(8): 89-91.
papers[J]. ACS Applied Materials & Interfaces, 2016, 8(20): [64] ZHANG H Y (张洪艳), WANG H Q (王海泉), CHEN X Q (陈秀
13123-13132. 琴), et al. Structure, application and surface treatment of spiral
[45] CHEN Y M, PANG L, LI Y, et al. Ultra-thin and highly flexible carbon fiber[J]. Journal of Weifang College (潍坊学院学报), 2018,
cellulose nanofiber/silver nanowire conductive paper for effective 18(2): 27-31.
electromagnetic interference shielding[J]. Composites Part A: [65] QIU J, QIU T T. Fabrication and microwave absorption properties of
Applied Science and Manufacturing, 2020, 135: 105960. magnetite nanoparticle-carbon nanotube-hollow carbon fiber
[46] ZHANG Y X (张永翔), SUN X G (孙晓刚), PANG Z P (庞志鹏), composites[J]. Carbon, 2015, 81(6): 20-28.
et al. Study on carbon nano tube/cellulose fiber composite paper and [66] YE W (叶伟), WU C B (吴程斌), SUN Q L (孙启龙), et al.
its electromagnetic shielding properties[J]. New Chemical Materials Preparation and properties of carbon fiber-based magnetic absorption
(化工新型材料), 2017, 45(9): 77-79. composites[J]. China Textile Leader (纺织导报), 2018, (12): 69-72.
[47] IMAI M, AKIYAMA K, TANAKA T, et al. Highly strong and [67] LIU C, WANG X L, HUANG X, et al. Absorption and reflection
conductive carbon nanotube/cellulose composite paper[J]. Composites contributions to the high performance of electromagnetic waves
Science and Technology, 2010, 70(10): 1564-1570. shielding materials fabricated by compositing leather matrix with
[48] CHEN X Y (程晓圆). Preparation and application of carbon nano metal nanoparticles[J]. ACS Applied Materials & Interfaces, 2018,
tube disusion[D]. Nanchang: Nanchang University (南昌大学), 2015. 10(16): 14036-14044.
[49] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and [68] LIU C, WANG X L, HUANG X, et al. Collagen fiber membrane as
toughening of MXene/cellulose nanofiber composite paper with an absorptive substrate to coat with carbon nanotubes-encapsulated
nacre-inspired structure and superior electromagnetic interference metal nanoparticles for lightweight, wearable, and absorption-
shielding properties[J]. ACS Nano, 2018, 12(5): 4583-4593. dominated shielding membrane[J]. Industrial & Engineering
[50] ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust and Chemistry Research, 2017, 56(30): 8553-8562.
multifunctional electromagnetic interference shielding film with [69] ZENG S, HUANG Z X, JIANG H, et al. From waste to wealth: A
alternating cellulose nanofiber and MXene layers[J]. ACS Applied lightweight and flexible leather solid waste/polyvinyl alcohol/
Materials & Interfaces, 2020, 12(4): 4895-4905. silver paper for highly efficient electromagnetic interference
[51] ACHARYA S, ALEGAONKAR P, DATAR S. Effect of formation of shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(46):
heterostructure of SrA l4Fe 8O 19/RGO/PVDF on the microwave 52038-52049.
absorption properties of the composite[J]. Chemical Engineering [70] GANGOPADHYAY R, DE A. Conducting polymer nanocomposites:
Journal, 2019, 374: 144-154. A brief overview[J]. Chemistry of Materials, 2000, 12(3): 608-622.
[52] MEI X K, LU L S, XIE Y X, et al. Preparation of flexible carbon [71] MA J J, ZHAN M S, WANG K. Ultralightweight silver nanowires
fiber fabrics with adjustable surface wettability for high-efficiency hybrid polyimide composite foams for high-performance
electromagnetic interference shielding[J]. ACS Applied Materials & electromagnetic interference shielding[J]. ACS Applied Materials &
Interfaces, 2020, 12(43): 49030-49041. Interfaces, 2015, 7(1): 563-576.
[53] ZHANG M C, WANG C Y, LIANG X P, et al. Weft-knitted fabric for [72] SUN R H (孙任辉). Study on preparation and performance of
a highly stretchable and low-voltage wearable heater[J]. Advanced hybridized materials based on 2D nanosphere[D]. Beijing: Beijing
Electronic Materials, 2018, 3(9): 1700193. University of Chemical Technology (北京化工大学), 2017.