Page 93 - 《精细化工》2021年第11期
P. 93
第 11 期 魏建斐,等: 蓝色荧光碳点的制备及检测、防伪应用 ·2239·
代传统有机荧光增白剂的潜质。此外,NCDs 在 300~ 1948-1955, 1973.
[15] WEI J, GAO J, LIU Y, et al. Rapid preparation of homogeneous
400 nm处的紫外吸收峰表明该碳点具有吸收紫外线 carbon dots with yellow fluorescence and formation mechanistic
的特性。 investigation[J]. Journal of Nanoparticle Resesrch, 2019, 21(4): 74.
[16] WEI J, YUAN Y, LI H, et al. A novel fluorescent sensor for water in
(3)NCDs 为平均粒径 4.96 nm 具有类石墨烯 organic solvents based on dynamic quenching of carbon quantum
dots[J]. New Journal of Chemistry, 2018, 42: 18787-18793.
结构的球形碳核,表面含有—NH 2 、—COOH 和— [17] XU Q, WEI J, WANG J, et al. Facile synthesis of copper doped carbon
OH,因此易与各种纺织材料以化学键形式结合,增 dots and their application as a “turn-off” fluorescent probe in the
3+
detection of Fe ions[J]. Rsc Advances, 2016, 6(34): 28745-28750.
强牢度和耐水洗性。 [18] LIU J H, LI D Y, HE J H, et al. Polarity-sensitive polymer carbon dots
3+
(4)NCDs 可用于 Fe 的定量检测,线性范围: prepared at room-temperature for monitoring the cell polarity dynamics
during autophagy[J]. ACS Applied Materials & Interfaces, 2020,
0.1~87.5 μmol/L,检测限为 50 nmol/L。此外,NCDs 12(4): 4815-4820.
[19] JIANG Y J, LIN M, YANG T, et al. Nitrogen and phosphorus doped
可用于制备荧光防伪的荧光墨水。 polymer carbon dots as a sensitive cellular mapping probe of nitrite
总之,本文制备的非激发波长依赖型 NCDs 对 [J]. Journal of Materials Chemistry B, 2019, 7(12): 2074-2080.
[20] ZHU S J, ZHAO X H, SONG Y B, et al. Beyond bottom-up carbon
于拓展碳点在荧光防伪中的应用具有重要意义。对 nanodots: Citric-acid derived organic molecules[J]. Nano Today,
于蓝色以外的非激发波长依赖型荧光碳点的制备及 2016, 11(2): 128-132.
[21] ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent
应用将是未来重要的研究方向。 carbon dots for multicolor patterning, sensors, and bioimaging[J].
Angewandte Chemie International Edition, 2013, 52(14): 3953-3957.
[22] CAI H, ZHU Y, XU H, et al. Fabrication of fluorescent hybrid
参考文献:
nanomaterials based on carbon dots and its applications for improving
[1] LIU Y, WEI J, YAN X, et al. Barium charge transferred doped carbon the selective detection of Fe (Ⅲ) in different matrices and cellular
dots with ultra-high quantum yield photoluminescence of 99.6% and imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular
applications[J]. Chinese Chemical Letters, 2021, 32(2): 861-865. Spectroscopy, 2021, 246: 119033.
[2] JI X, WANG S, LUO Y, et al. Green synthesis of weissella-derived [23] LIU Z, CHEN M, GUO Y, et al. Oxidized nanocellulose facilitates
fluorescence carbon dots for microbial staining, cell imaging and preparing photoluminescent nitrogen-doped fluorescent carbon dots
3+
dual sensing of vitamin B12 and hexavalent chromium[J]. Dyes and for Fe ions detection and bioimaging[J]. Chemical Engineering
Pigments, 2021, 184: 108818. Journal, 2020, 384: 123260.
[3] XU X, RAY R, GU Y, et al. Electrophoretic analysis and purification [24] BALACHANDRAN A L, DEEPTHI A, SUNEESH C V.
of fluorescent single-walled carbon nanotube fragments[J]. Journal of Tetrasubstituted cyclopentenone-based fluorescent chemosensors for
3+
2+
the American Chemical Society, 2004, 126(40): 12736-12737. the selective detection of Fe and Cu ions[J]. Luminescence, 2020,
2
[4] TEPLIAKOV N V, KUNDELEV E V, KHAVLYUK P D, et al. sp – 35(1): 62-68.
3
sp -Hybridized atomic domains determine optical features of carbon [25] XIA C, ZHU S, ZHANG S T, et al. Carbonized polymer dots with tunable
dots[J]. ACS Nano, 2019, 13(9): 10737-10744. room-temperature phosphorescence lifetime and wavelength [J]. ACS
[5] JIANG K, GAO X, FENG X, et al. Carbon dots with dual-emissive, Applied Materials & Interfaces, 2020, 12(34): 38593-38601.
robust, and aggregation-induced room-temperature phosphorescence [26] BAATOUT K, SAAD F, BAFFOUN A, et al. Luminescent cotton
characteristics[J]. Angewandte Chemie International Edition, 2020, fibers coated with fluorescein dye for anti-counterfeiting applications
59(3): 1263-1269. [J]. Materials Chemistry Physics, 2019, 234: 304-310.
[6] MAHMOOD A, WANG X, SHI G, et al. Revealing adsorption and [27] YUAN F, YUAN T, SUI L, et al. Engineering triangular carbon
the photodegradation mechanism of gas phase o-xylene on carbon quantum dots with unprecedented narrow bandwidth emission for
quantum dots modified TiO 2 nanoparticles[J]. Journal of Hazardous multicolored LEDs[J]. Nature Communications, 2018, 9(1): 2249.
Materials, 2020, 386: 121962-121962. [28] RECKMEIER C J, SCHNEIDER J, SUSHA A S, et al. Luminescent
[7] SEMENIUK M, YI Z, POURSORKHABI V, et al. Future perspectives colloidal carbon dots: Optical properties and effects of doping[J].
and review on organic carbon dots in electronic applications[J]. ACS Optics Express, 2016, 24(2): 312-340.
Nano, 2019, 13(6): 6224-6255. [29] RECKMEIER C J, WANG Y, ZBORIL R, et al. Influence of doping
[8] MIAO X, QU D, YANG D, et al. Synthesis of carbon dots with and temperature on solvatochromic shifts in optical spectra of carbon
multiple color emission by controlled graphitization and surface dots[J]. The Journal of Physical Chemistry C, 2016, 120(19): 10591-
functionalization[J]. Advanced Materials, 2018, 30(1): 1704740. 10604.
[9] JU E, LI T, LIU Z, et al. Specific inhibition of viral micrornas by [30] JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence
carbon dots-mediated delivery of locked nucleic acids for therapy of by carbon dots: Full-color emission tuning and multicolor cellular
virus-induced cancer[J]. ACS Nano, 2020, 14(1): 476-487. imaging[J]. Angewandte Chemie International Edition, 2015, 54(18):
[10] ZHANG W J, LIU S G, HAN L, et al. A ratiometric fluorescent and 5360-5363.
colorimetric dual-signal sensing platform based on N-doped carbon [31] QU D, ZHENG M, ZHANG L, et al. Formation mechanism and
dots for selective and sensitive detection of copper( Ⅱ ) and optimization of highly luminescent N-doped graphene quantum
pyrophosphate ion[J]. Sensors Actuators B: Chemical, 2019, 283: dots[J]. Scientific Reports, 2014, 4: 5294.
215-221. [32] DING H, WEI J S, XIONG H M. Nitrogen and sulfur co-doped carbon
[11] ZHANG D Q (张大琴), LI C Y (李超勇), JIA Z G (贾志刚), et al. dots with strong blue luminescence[J]. Nanoscale, 2014, 6(22): 13817-
Synthesis of Ag/E-CDs/Fe 3O 4 based on carbon dot derived from 13823.
eggshell membrane and its performance of catalytic reduction[J]. [33] HOU J, WANG W, ZHOU T, et al. Synthesis and formation mechanistic
Fine Chemicals (精细化工), 2021, 38(1): 118-123. investigation of nitrogen-doped carbon dots with high quantum yields
[12] LI X J (李鑫杰), WANG X C (王学川), LI J (李季). Preparation of and yellowish-green fluorescence[J]. Nanoscale, 2016, 8(21): 11185-
carbon dots based mesoporous fluorescent probe and its determination 11193.
of TNP[J]. Fine Chemicals (精细化工), 2020, 37(9): 1825-1832. [34] XU Q, LIU Y, SU R, et al. Highly fluorescent Zn-doped carbon dots
[13] JIANG S F (姜时锋), LUO Z (罗珍), XU G W (许戈文), et al. as Fenton reaction-based bio-sensors: An integrative experimental-
Preparation and properties of carbon dots/waterborne polyurethane theoretical consideration[J]. Nanoscale, 2016, 8(41): 17919.
composites[J]. Fine Chemicals (精细化工), 2020, 37(1): 26-32. [35] XU Q, LIU Y, GAO C, et al. Synthesis, mechanistic investigation,
[14] GUO M Y (郭明媛), ZHANG G H (张光华), WANG Z R (王子儒). and application of photoluminescent sulfur and nitrogen co-doped
Preparation and properties of coumarin-modified carbon quantum carbon dots[J]. Journal of Materials Chemistry C, 2015, 3(38): 9885-
dots as light stabilizer[J]. Fine Chemicals (精细化工), 2018, 35(11): 9893.