Page 108 - 《精细化工》2021年第12期
P. 108
·2470· 精细化工 FINE CHEMICALS 第 38 卷
质结构)促进了细胞的黏附和快速增殖。负载的 Ss 到 58%,在 7 d 内能够实现药物长效释放,药物累
也促进了细胞的增殖,Ss 含量为 20%的载药纳米纤 积释放量可达 77%;纳米纤维膜能够有效地抑制大
维膜增殖效果最好,7 d 细胞活性达到 171%,较未 肠杆菌和金黄色葡萄球菌;纳米纤维膜具有较好的
负载 Ss 的载药纳米纤维膜(146%)高 25%,较 PAE 生物相容性,Ss 含量为 20%的纳米纤维膜增殖效果
与 Ss 均未负载的纳米纤维膜(133%)高 38%。这 最好,细胞增殖率达到 171%,较未添加 Ss 的纳米
是因为,Ss 中含有生物活性基序 4RepCT [26] ,具有 纤维膜的细胞活性高 25%,较 PAE 与 Ss 均未负载
良好的生物相容性。并且随着 Ss 含量的增加,纳米 的纳米纤维膜细胞活性高 38%,在细胞增殖过程中
纤维膜的亲水性得到改善,共同促进细胞黏附,同 Ss 和 PAE 起到了协同作用。
时 PAE 能够促进成纤维细胞分泌生长因子,促进细
参考文献:
胞增殖。纳米纤维膜的核壳结构使得 Ss 和 PAE 在
[1] GU Y P (谷炎培), HAN J X (韩建欣), ZHANG Y (张英), et al.
促进细胞黏附增殖的过程中起着协同作用。
Research progress on plant extracts delaying photoaging of skin[J].
Fine Chemicals (精细化工), 2020, 37(2): 217-221, 241.
[2] KOEHLER J, BRANDL F P, GOEPFERICH A M. Hydrogel wound
dressings for bioactive treatment of acute and chronic wounds[J].
European Polymer Journal, 2018, 100(8): 1-11.
[3] LEE C H, HSIEH M J, CHANG S H, et al. Enhancement of diabetic
wound repair using biodegradable nanofibrous metformin-eluting
membranes: In vitro and in vivo[J]. ACS Applied Materials &
Interfaces, 2014, 6(6): 3979-3986.
[4] MAYANDI V, CHOONG A C W, DHAND C, et al. Multifunctional
antimicrobial nanofibre dressings containing ε-polylysine for the
eradication of bacterial bioburden and promotion of wound healing in
critically colonized wounds[J]. ACS Applied Materials &Interfaces,
2020, 12(14): 15989-16005.
[5] MAGGAY I V, VENAULT A, FANG C Y, et al. Zwitterionized
nanofibrous poly(vinylidene fluoride) membranes for improving the
healing of diabetic wounds[J]. ACS Biomaterials Science & Engineering,
2021, 7(2): 562-576.
[6] ZHANG B L, HE J H, SHI M T, et al. Injectable self-healing
supramolecular hydrogels with conductivity and photo-thermal
antibacterial activity to enhance complete skin regeneration[J].
Chemical Engineering Journal, 2020, 400:125994.
[7] HUANG H Y, SKRIPKA A, ZAROUBI L, et al. Electrospun
upconverting nanofibrous hybrids with smart NIR-light-controlled
drug release for wound dressing[J]. ACS Applied Bio Materials,
2020, 3(10): 7219-7227.
[8] JIANG X X, LI M, GUO X X, et al. Self-assembled DNA-THPS
hydrogel as a topical antibacterial agent for wound healing[J]. ACS
图 6 未负载 PAE 纤维膜(a)和负载 PAE 纤维膜(b)
Applied Bio Materials, 2019, 2(3): 1262-1269.
的细胞增殖率 [9] XU W, SONG Q, XU J F, et al. Supramolecular hydrogels fabricated
Fig.6 Cell proliferation rates of unloaded PAE fiber membranes from supramonomers: Anovel wound dressing material[J]. ACS
(a) and load PAE fiber membranes (b) Applied Materials & Interfaces, 2017, 9(13): 11368-11372.
[10] YIN G B (尹桂波), ZHANG Y Z (张幼珠). Structure and properties
3 结论 of electrospun regenerated silk fibroin nanofibers[J]. Fine Chemicals
(精细化工), 2006, 23(9): 882-886.
[11] YU B R, HE C H, WANG W B, et al. An asymmetric wettable
(1)利用同轴静电纺丝技术成功制备了具有核 composite wound dressing prepared by electrospinning with
壳结构的纳米纤维膜,随着 Ss 含量的增加,纤维直 bio-inspired micropatterning enhances diabetic wound healing[J].
ACS Applied Bio Materials, 2020, 3(8): 5383-5394.
径从 350 nm 降至 280 nm,核层厚度由 120 nm 升至 [12] RIEGER K A, BIRCH N P, SCHIFFMAN J D. Designing
140 nm,壳层厚度由 115 nm 降至 70 nm。 electrospun nanofiber mats to promote wound healing-A review[J].
Journal of Materials Chemistry B, 2013, 1(36): 4531-4541.
(2)随着 Ss 含量的增加,纳米纤维膜的水接触
[13] YANG S, LI X M, LIU P, et al. Multifunctional chitosan/polycaprolactone
角由 93.8°减少到 32.7°,同时具有 150%的高溶胀率 nanofiber scaffolds with varied dual-drug release for wound healing
2
和 1834 g/(m ·24 h)的高水蒸气透过率,为伤口修复 applications[J]. ACS Biomaterials Science & Engineering, 2020, 6(8):
4666-4676.
提供了湿润的透气环境,同时纳米纤维膜具有良好 [14] CHEN Y (陈艳), SHI X S (施晓松), XU C (徐超), et al. Study on
的机械性能。 process parameters of polycaprolactone drug-loaded fiber prepared
by electrospinning[J]. Engineering Plastics Application (工程塑料应
(3)具有核壳结构的纳米纤维膜能够有效地抑
用), 2021, 49(2): 67-73.
制药物突释,Ss 含量为 20%时,48 h 内药物释放达 (下转第 2545 页)