Page 108 - 《精细化工》2021年第12期
P. 108

·2470·                            精细化工   FINE CHEMICALS                                 第 38 卷

            质结构)促进了细胞的黏附和快速增殖。负载的 Ss                           到 58%,在 7 d 内能够实现药物长效释放,药物累
            也促进了细胞的增殖,Ss 含量为 20%的载药纳米纤                         积释放量可达 77%;纳米纤维膜能够有效地抑制大
            维膜增殖效果最好,7 d 细胞活性达到 171%,较未                        肠杆菌和金黄色葡萄球菌;纳米纤维膜具有较好的
            负载 Ss 的载药纳米纤维膜(146%)高 25%,较 PAE                    生物相容性,Ss 含量为 20%的纳米纤维膜增殖效果
            与 Ss 均未负载的纳米纤维膜(133%)高 38%。这                       最好,细胞增殖率达到 171%,较未添加 Ss 的纳米
            是因为,Ss 中含有生物活性基序 4RepCT               [26] ,具有     纤维膜的细胞活性高 25%,较 PAE 与 Ss 均未负载
            良好的生物相容性。并且随着 Ss 含量的增加,纳米                          的纳米纤维膜细胞活性高 38%,在细胞增殖过程中
            纤维膜的亲水性得到改善,共同促进细胞黏附,同                             Ss 和 PAE 起到了协同作用。
            时 PAE 能够促进成纤维细胞分泌生长因子,促进细
                                                               参考文献:
            胞增殖。纳米纤维膜的核壳结构使得 Ss 和 PAE 在
                                                               [1]   GU Y P (谷炎培), HAN J X (韩建欣), ZHANG Y (张英),  et al.
            促进细胞黏附增殖的过程中起着协同作用。
                                                                   Research progress on plant extracts delaying photoaging of skin[J].

                                                                   Fine Chemicals (精细化工), 2020, 37(2): 217-221, 241.
                                                               [2]   KOEHLER J, BRANDL F P, GOEPFERICH A M. Hydrogel wound
                                                                   dressings for bioactive treatment of acute and chronic wounds[J].
                                                                   European Polymer Journal, 2018, 100(8): 1-11.
                                                               [3]   LEE C H, HSIEH M J, CHANG S H, et al. Enhancement of diabetic
                                                                   wound repair  using biodegradable nanofibrous metformin-eluting
                                                                   membranes:  In vitro  and in vivo[J]. ACS Applied Materials &
                                                                   Interfaces, 2014, 6(6): 3979-3986.
                                                               [4]   MAYANDI V, CHOONG A C W, DHAND C, et al. Multifunctional
                                                                   antimicrobial nanofibre dressings containing  ε-polylysine for the
                                                                   eradication of bacterial bioburden and promotion of wound healing in
                                                                   critically colonized wounds[J]. ACS Applied Materials &Interfaces,
                                                                   2020, 12(14): 15989-16005.
                                                               [5]   MAGGAY I V,  VENAULT  A, FANG C Y,  et al. Zwitterionized
                                                                   nanofibrous poly(vinylidene fluoride) membranes for improving the
                                                                   healing of diabetic wounds[J]. ACS Biomaterials Science & Engineering,
                                                                   2021, 7(2): 562-576.
                                                               [6]   ZHANG B L,  HE J H, SHI M  T,  et al. Injectable self-healing
                                                                   supramolecular hydrogels with conductivity and  photo-thermal
                                                                   antibacterial activity to enhance complete skin regeneration[J].
                                                                   Chemical Engineering Journal, 2020, 400:125994.
                                                               [7]   HUANG H Y, SKRIPKA A, ZAROUBI L,  et al. Electrospun
                                                                   upconverting nanofibrous hybrids with smart  NIR-light-controlled
                                                                   drug release for wound dressing[J]. ACS Applied Bio  Materials,
                                                                   2020, 3(10): 7219-7227.
                                                               [8]   JIANG X X, LI M, GUO X X,  et al. Self-assembled DNA-THPS
                                                                   hydrogel as a topical antibacterial agent for wound healing[J]. ACS
            图 6   未负载 PAE 纤维膜(a)和负载 PAE 纤维膜(b)
                                                                   Applied Bio Materials, 2019, 2(3): 1262-1269.
                  的细胞增殖率                                       [9]   XU W, SONG Q, XU J F, et al. Supramolecular hydrogels fabricated
            Fig.6    Cell proliferation rates of unloaded PAE fiber membranes   from supramonomers: Anovel wound dressing material[J]. ACS
                  (a) and load PAE fiber membranes (b)             Applied Materials & Interfaces, 2017, 9(13): 11368-11372.

                                                               [10]  YIN G B (尹桂波), ZHANG Y Z (张幼珠). Structure and properties
            3   结论                                                 of electrospun regenerated silk fibroin nanofibers[J]. Fine Chemicals
                                                                   (精细化工), 2006, 23(9): 882-886.
                                                               [11]  YU B  R, HE C H, WANG W  B,  et al. An asymmetric wettable
                (1)利用同轴静电纺丝技术成功制备了具有核                              composite wound dressing prepared by electrospinning with
            壳结构的纳米纤维膜,随着 Ss 含量的增加,纤维直                              bio-inspired micropatterning enhances diabetic wound healing[J].
                                                                   ACS Applied Bio Materials, 2020, 3(8): 5383-5394.
            径从 350 nm 降至 280 nm,核层厚度由 120 nm 升至                [12]  RIEGER K  A,  BIRCH  N P, SCHIFFMAN J D.  Designing
            140 nm,壳层厚度由 115 nm 降至 70 nm。                          electrospun nanofiber  mats to promote wound healing-A review[J].
                                                                   Journal of Materials Chemistry B, 2013, 1(36): 4531-4541.
                (2)随着 Ss 含量的增加,纳米纤维膜的水接触
                                                               [13]  YANG S, LI X M, LIU P, et al. Multifunctional chitosan/polycaprolactone
            角由 93.8°减少到 32.7°,同时具有 150%的高溶胀率                       nanofiber scaffolds with varied dual-drug release for wound healing
                        2
            和 1834 g/(m ·24 h)的高水蒸气透过率,为伤口修复                       applications[J]. ACS Biomaterials Science & Engineering, 2020, 6(8):
                                                                   4666-4676.
            提供了湿润的透气环境,同时纳米纤维膜具有良好                             [14]  CHEN Y (陈艳), SHI X S (施晓松), XU C (徐超), et al. Study on
            的机械性能。                                                 process  parameters of polycaprolactone drug-loaded fiber prepared
                                                                   by electrospinning[J]. Engineering Plastics Application (工程塑料应
                (3)具有核壳结构的纳米纤维膜能够有效地抑
                                                                   用), 2021, 49(2): 67-73.
            制药物突释,Ss 含量为 20%时,48 h 内药物释放达                                                    (下转第 2545 页)
   103   104   105   106   107   108   109   110   111   112   113