Page 40 - 《精细化工》2021年第12期
P. 40
·2402· 精细化工 FINE CHEMICALS 第 38 卷
能可穿戴领域展现出广泛的应用潜力。然而其能量 MXene/carbon nanotube yarn supercapacitors[J]. Small, 2018, 14(37):
1802225.
密度仍然低于电池,这也限制了其广泛应用。近年 [13] ZHENG X H, ZHOU X H, XU J, et al. Highly stretchable CNT/
来,虽然各种新型赝电容活性材料的开发应用以及 MnO 2 nanosheets fiber supercapacitors with high energy density[J].
Journal of Materials Science, 2020, 55(19): 8251-8263.
超级电容器电极材料的结构设计取得一定进展,使 [14] SU F H, LV X M, MIAO M H. High-performance two-ply yarn
得纤维状超级电容器的电化学性能得到很大提升, supercapacitors based on carbon nanotube yarns dotted with Co 3O 4
and NiO nanoparticles[J]. Small, 2015, 11(7): 854-861.
但是纤维状超级电容器的发展仍然面临一系列的问 [15] WANG K, MENG Q H, ZHANG Y J, et al. High-performance two-
题:(1)现有的纤维状超级电容器的性能评价指标 ply yarn supercapacitors based on carbon nanotubes and polyaniline
nanowire arrays[J]. Advanced Materials, 2013, 25(10): 1494-1498.
不统一,比如面积比、体积比、长度比、质量比, [16] LIU J H, XU X Y, LU W B, et al. A high performance all-solid-state
因此,迫切需要统一的性能评价标准;(2)纤维状 flexible supercapacitor based on carbon nanotube fiber/carbon
nanotubes/polyaniline with a double core-sheathed structure[J].
超级电容器的能量密度有待进一步提升,尤其是体 Electrochimica Acta, 2018, 283: 366-373.
积比能量密度;(3)纤维状超级电容器如何与其他 [17] REN J, BAI W Y, GUAN G Z, et al. Flexible and weaveable
capacitor wire based on a carbon nanocomposite fiber[J]. Advanced
智能可穿戴器件集成,提高其输出功率并为大功率 Materials, 2013, 25(41): 5965-5970.
可穿戴电子器件提供能量;(4)如何织造大面积基 [18] REN C L, YAN Y S, SUN B Z, et al. Wet-spinning assembly and in
situ electrodeposition of carbon nanotube-based composite fibers for
于纤维状超级电容器的超级电容器织物仍然面临困 high energy density wire-shaped asymmetric supercapacitor[J]. Journal
难,纤维状超级电容器的织造工艺有待进一步完善; of Colloid and Interface Science, 2020, 569: 298-306.
[19] YUAN H, WANG G, ZHAO Y X, et al. A stretchable, asymmetric,
(5)纤维电极材料的电化学性能和机械性能需要进 coaxial fiber-shaped supercapacitor for wearable electronics[J]. Nano
行平衡,以满足实际应用需求;(6)纤维电极径向 Research, 2020, 13(6): 1686-1692.
[20] LIU N, PAN Z H, DING X Y, et al. In-situ growth of vertically
离子传递过程和轴向电子传输过程仍需要进行调 aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for
high capacitance all-solid-state asymmetric fiber-supercapacitors[J].
控,以获得更优异的倍率性能和更高的比电容。因
Journal of Energy Chemistry, 2020, 41: 209-215.
此,对电极材料进行结构设计和性能优化,提升纤 [21] PARK J W, LEE D Y, KIM H, et al. Highly loaded MXene/carbon
nanotube yarn electrodes for improved asymmetric supercapacitor
维状超级电容器的能量密度,并为大功率可穿戴电
performance[J]. Mrs Communications, 2019, 9(1): 114-121.
子器件提供能量将会是未来的一大发展方向。 [22] PAN Z H, YANG J, ZHANG Q C, et al. All-solid-state fiber
supercapacitors with ultrahigh volumetric energy density and
参考文献: outstanding flexibility[J]. Advanced Energy Materials, 2019, 9(9):
1802753.
[1] MA J (马婧), WANG F P (王芳平), ZHOU K L (周凯玲), et al. [23] SUN J, ZHANG Q C, WANG X N, et al. Constructing hierarchical
Preparation of sandwich-type biochar electrode materials and dandelion-like molybdenum-nickel-cobalt ternary oxide nanowire
performance of supercapacitor[J]. Fine Chemicals (精细化工), 2021, arrays on carbon nanotube fiber for high-performance wearable fiber-
38(2): 374-379. shaped asymmetric supercapacitors[J]. Journal of Materials Chemistry
[2] WANG P F (王鹏飞), ZHI Y F (支云飞), SHAN S Y (陕绍云), et al. A, 2017, 5(40): 21153-21160.
Research progress of carbon-based materials of melamine resin as [24] SUN G Z, ZHANG X, LIN R Z, et al. Hybrid fibers made of
precursor in electrochemical energy storage electrode materials[J]. molybdenum disulfide, reduced graphene oxide, and multi-walled
Fine Chemicals (精细化工), 2021, 38(3): 454-463. carbon nanotubes for solid-state, flexible, asymmetric supercapacitors[J].
[3] LIAO M, YE L, ZHANG Y, et al. The recent advance in fiber-shaped Angewandte Chemie-International Edition, 2015, 54(15): 4651-4656.
energy storage devices[J]. Advanced Electronic Materials, 2019, 5(1): [25] ZHANG Q C, WANG X N, PAN Z H, et al. Wrapping aligned carbon
1800456. nanotube composite sheets around vanadium nitride nanowire arrays
[4] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh
nanotubes-the route toward applications[J]. Science, 2002, 297(5582): energy density[J]. Nano Letters, 2017, 17(4): 2719-2726.
787-792. [26] PARK H, AMBADE R B, NOH S H, et al. Porous graphene-carbon
[5] DALTON A B, COLLINS S, MUNOZ E, et al. Super-tough carbon- nanotube scaffolds for fiber supercapacitors[J]. ACS Applied Materials
nanotube fibres[J]. Nature, 2003, 423(6941): 703. & Interfaces, 2019, 11(9): 9011-9022.
[6] LIMA M D, FANG S L, LEPRO X, et al. Biscrolling nanotube sheets [27] LI Q, CHENG H Y, WU X J, et al. Enriched carbon dots/graphene
and functional guests into yarns[J]. Science, 2011, 331(6013): 51-55. microfibers towards high-performance micro-supercapacitors[J].
[7] SUN H, YOU X, DENG J, et al. Novel graphene/carbon nanotube Journal of Materials Chemistry A, 2018, 6(29): 14112-14119.
composite fibers for efficient wire-shaped miniature energy [28] MA W J, CHEN S H, YANG S Y, et al. Hierarchically porous
devices[J]. Advanced Materials, 2014, 26(18): 2868-2873. carbon black/graphene hybrid fibers for high performance flexible
[8] MENG Q H, WU H P, MENG Y N, et al. High-performance all- supercapacitors[J]. RSC Advances, 2016, 6(55): 50112-50118.
carbon yarn micro-supercapacitor for an integrated energy system[J]. [29] XU T, YANG D Z, FAN Z J, et al. Reduced graphene oxide carbon
Advanced Materials, 2014, 26(24): 4100-4106. nanotube hybrid fibers with narrowly distributed mesopores for
[9] CHOI C, KIM K M, KIM K J, et al. Improvement of system capacitance flexible supercapacitors with high volumetric capacitances and
via weavable superelastic biscrolled yarn supercapacitors[J]. Nature satisfactory durability[J]. Carbon, 2019, 152: 134-143.
Communications, 2016, 7: 13811. [30] MA W J, LI M, ZHOU X, et al. Three-dimensional porous carbon
[10] CHOI C, SIM H J, SPINKS G M, et al. Elastomeric and dynamic nanotubes/reduced graphene oxide fiber from rapid phase separation
MnO 2/CNT core-shell structure coiled yarn supercapacitor[J]. Advanced for a high-rate all-solid-state supercapacitor[J]. ACS Applied Materials
Energy Materials, 2016, 6(5): 1502119. & Interfaces, 2019, 11(9): 9283-9290.
[11] LEE J A, SHIN M K, KIM S H, et al. Ultrafast charge and discharge [31] MA W J, LI W F, LI M, et al. Unzipped carbon nanotube/graphene
biscrolled yarn supercapacitors for textiles and microdevices[J]. hybrid fiber with less “dead volume” for ultrahigh volumetric energy
Nature Communications, 2013, 4: 1970. density supercapacitors[J]. Advanced Functional Materials, 2021,
[12] WANG Z Y, QIN S, SEYEDIN S, et al. High-performance biscrolled 31(19): 2100195.