Page 40 - 《精细化工》2021年第12期
P. 40

·2402·                            精细化工   FINE CHEMICALS                                 第 38 卷

            能可穿戴领域展现出广泛的应用潜力。然而其能量                                 MXene/carbon nanotube yarn supercapacitors[J]. Small, 2018, 14(37):
                                                                   1802225.
            密度仍然低于电池,这也限制了其广泛应用。近年                             [13]  ZHENG X H, ZHOU X H, XU J,  et al. Highly stretchable CNT/
            来,虽然各种新型赝电容活性材料的开发应用以及                                 MnO 2 nanosheets fiber supercapacitors with high energy density[J].
                                                                   Journal of Materials Science, 2020, 55(19): 8251-8263.
            超级电容器电极材料的结构设计取得一定进展,使                             [14]  SU F H, LV X M, MIAO M H. High-performance two-ply yarn
            得纤维状超级电容器的电化学性能得到很大提升,                                 supercapacitors based on carbon nanotube yarns dotted with Co 3O 4
                                                                   and NiO nanoparticles[J]. Small, 2015, 11(7): 854-861.
            但是纤维状超级电容器的发展仍然面临一系列的问                             [15]  WANG K, MENG Q H, ZHANG Y J, et al. High-performance two-
            题:(1)现有的纤维状超级电容器的性能评价指标                                ply yarn supercapacitors based on carbon nanotubes and polyaniline
                                                                   nanowire arrays[J]. Advanced Materials, 2013, 25(10): 1494-1498.
            不统一,比如面积比、体积比、长度比、质量比,                             [16]  LIU J H, XU X Y, LU W B, et al. A high performance all-solid-state
            因此,迫切需要统一的性能评价标准;(2)纤维状                                flexible supercapacitor based on carbon  nanotube fiber/carbon
                                                                   nanotubes/polyaniline with a double core-sheathed structure[J].
            超级电容器的能量密度有待进一步提升,尤其是体                                 Electrochimica Acta, 2018, 283: 366-373.
            积比能量密度;(3)纤维状超级电容器如何与其他                            [17]  REN J, BAI W  Y, GUAN  G Z,  et al. Flexible and  weaveable
                                                                   capacitor wire based on a carbon nanocomposite fiber[J]. Advanced
            智能可穿戴器件集成,提高其输出功率并为大功率                                 Materials, 2013, 25(41): 5965-5970.
            可穿戴电子器件提供能量;(4)如何织造大面积基                            [18]  REN C L, YAN Y S, SUN B Z, et al. Wet-spinning assembly and in
                                                                   situ electrodeposition of carbon nanotube-based composite fibers for
            于纤维状超级电容器的超级电容器织物仍然面临困                                 high energy density wire-shaped asymmetric supercapacitor[J]. Journal
            难,纤维状超级电容器的织造工艺有待进一步完善;                                of Colloid and Interface Science, 2020, 569: 298-306.
                                                               [19]  YUAN H, WANG G, ZHAO Y X, et al. A stretchable, asymmetric,
            (5)纤维电极材料的电化学性能和机械性能需要进                                coaxial fiber-shaped supercapacitor for wearable electronics[J]. Nano
            行平衡,以满足实际应用需求;(6)纤维电极径向                                Research, 2020, 13(6): 1686-1692.
                                                               [20]  LIU N, PAN Z H, DING X Y,  et al.  In-situ growth of  vertically
            离子传递过程和轴向电子传输过程仍需要进行调                                  aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for
                                                                   high capacitance all-solid-state asymmetric fiber-supercapacitors[J].
            控,以获得更优异的倍率性能和更高的比电容。因
                                                                   Journal of Energy Chemistry, 2020, 41: 209-215.
            此,对电极材料进行结构设计和性能优化,提升纤                             [21]  PARK J W, LEE D Y, KIM H, et al. Highly loaded MXene/carbon
                                                                   nanotube yarn electrodes for improved asymmetric supercapacitor
            维状超级电容器的能量密度,并为大功率可穿戴电
                                                                   performance[J]. Mrs Communications, 2019, 9(1): 114-121.
            子器件提供能量将会是未来的一大发展方向。                               [22]  PAN Z H, YANG J, ZHANG Q  C,  et al. All-solid-state fiber
                                                                   supercapacitors with ultrahigh volumetric energy density and
            参考文献:                                                  outstanding flexibility[J]. Advanced Energy Materials, 2019, 9(9):
                                                                   1802753.
            [1]   MA J (马婧), WANG F P (王芳平), ZHOU K L (周凯玲),  et al.   [23]  SUN J, ZHANG Q C, WANG X N, et al. Constructing hierarchical
                 Preparation of sandwich-type biochar electrode materials and   dandelion-like molybdenum-nickel-cobalt ternary oxide nanowire
                 performance of supercapacitor[J]. Fine Chemicals (精细化工), 2021,   arrays on carbon nanotube fiber for high-performance wearable fiber-
                 38(2): 374-379.                                   shaped asymmetric supercapacitors[J]. Journal of Materials Chemistry
            [2]   WANG P F (王鹏飞), ZHI Y F (支云飞), SHAN S Y (陕绍云), et al.   A, 2017, 5(40): 21153-21160.
                 Research progress  of carbon-based materials of melamine resin as   [24]  SUN  G Z, ZHANG  X,  LIN R Z,  et al. Hybrid fibers  made of
                 precursor in electrochemical  energy storage electrode materials[J].   molybdenum disulfide, reduced graphene oxide, and multi-walled
                 Fine Chemicals (精细化工), 2021, 38(3): 454-463.      carbon nanotubes for solid-state, flexible, asymmetric supercapacitors[J].
            [3]   LIAO M, YE L, ZHANG Y, et al. The recent advance in fiber-shaped   Angewandte Chemie-International Edition, 2015, 54(15): 4651-4656.
                 energy storage devices[J]. Advanced Electronic Materials, 2019, 5(1):   [25]  ZHANG Q C, WANG X N, PAN Z H, et al. Wrapping aligned carbon
                 1800456.                                          nanotube composite sheets around vanadium nitride nanowire arrays
            [4]   BAUGHMAN R  H, ZAKHIDOV A  A, DE HEER W  A. Carbon   for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh
                 nanotubes-the route toward applications[J]. Science, 2002, 297(5582):   energy density[J]. Nano Letters, 2017, 17(4): 2719-2726.
                 787-792.                                      [26]  PARK H, AMBADE R B, NOH S H, et al. Porous graphene-carbon
            [5]   DALTON A B, COLLINS S, MUNOZ E, et al. Super-tough carbon-   nanotube scaffolds for fiber supercapacitors[J]. ACS Applied Materials
                 nanotube fibres[J]. Nature, 2003, 423(6941): 703.   & Interfaces, 2019, 11(9): 9011-9022.
            [6]   LIMA M D, FANG S L, LEPRO X, et al. Biscrolling nanotube sheets   [27]  LI Q, CHENG H Y, WU X J, et al. Enriched carbon dots/graphene
                 and functional guests into yarns[J]. Science, 2011, 331(6013): 51-55.   microfibers towards high-performance  micro-supercapacitors[J].
            [7]   SUN H, YOU X, DENG J, et al. Novel graphene/carbon nanotube   Journal of Materials Chemistry A, 2018, 6(29): 14112-14119.
                 composite fibers for efficient wire-shaped miniature energy   [28]  MA W J, CHEN  S H, YANG S Y,  et al. Hierarchically porous
                 devices[J]. Advanced Materials, 2014, 26(18): 2868-2873.   carbon black/graphene hybrid fibers for high  performance flexible
            [8]   MENG  Q H, WU  H P, MENG  Y  N,  et al. High-performance  all-   supercapacitors[J]. RSC Advances, 2016, 6(55): 50112-50118.
                 carbon yarn micro-supercapacitor for an integrated energy system[J].   [29]  XU T, YANG D Z, FAN Z J, et al. Reduced graphene oxide carbon
                 Advanced Materials, 2014, 26(24): 4100-4106.      nanotube hybrid fibers with narrowly distributed mesopores  for
            [9]   CHOI C, KIM K M, KIM K J, et al. Improvement of system capacitance   flexible supercapacitors with high volumetric  capacitances  and
                 via weavable superelastic biscrolled yarn supercapacitors[J]. Nature   satisfactory durability[J]. Carbon, 2019, 152: 134-143.
                 Communications, 2016, 7: 13811.               [30]  MA W J, LI M, ZHOU X, et al. Three-dimensional porous carbon
            [10]  CHOI C, SIM H J, SPINKS G M, et al. Elastomeric and dynamic   nanotubes/reduced graphene oxide fiber from rapid phase separation
                 MnO 2/CNT core-shell structure coiled yarn supercapacitor[J]. Advanced   for a high-rate all-solid-state supercapacitor[J]. ACS Applied Materials
                 Energy Materials, 2016, 6(5): 1502119.            & Interfaces, 2019, 11(9): 9283-9290.
            [11]  LEE J A, SHIN M K, KIM S H, et al. Ultrafast charge and discharge   [31]  MA W J, LI W F, LI M, et al. Unzipped carbon nanotube/graphene
                 biscrolled yarn supercapacitors for textiles and microdevices[J].   hybrid fiber with less “dead volume” for ultrahigh volumetric energy
                 Nature Communications, 2013, 4: 1970.             density supercapacitors[J]. Advanced Functional Materials, 2021,
            [12]  WANG Z Y, QIN S, SEYEDIN S, et al. High-performance biscrolled   31(19): 2100195.
   35   36   37   38   39   40   41   42   43   44   45