Page 41 - 《精细化工》2021年第12期
P. 41

第 12 期                        郑贤宏,等:  纤维状柔性超级电容器的研究进展                                   ·2403·


            [32]  MENG J,  NIE W  Q, ZHANG  K,  et al. Enhancing electrochemical   [51]  YU N,  YIN  H, ZHANG W,  et al. High-performance  fiber-shaped
                 performance of graphene fiber-based supercapacitors by plasma   all-solid-state asymmetric supercapacitors based on ultrathin MnO 2
                 treatment[J]. ACS  Applied Materials & Interfaces, 2018, 10(16):   nanosheet/carbon fiber cathodes for wearable electronics[J]. Advanced
                 13652-13659.                                      Energy Materials, 2016, 6(2): 1501458.
            [33]  QU G X, ZHOU Y, ZHANG J H, et al. Alternately dipping method to   [52]  MOHAMED S G, HUSSAIN I, SAYED M S,  et al. One-step
                 prepare graphene fiber electrodes for ultra-high-capacitance fiber   development of octahedron-like CuCo 2O 4@carbon fibers for high-
                 supercapacitors[J]. Iscience, 2020, 23(8): 101396.   performance supercapacitors electrodes[J]. Journal of Alloys and
            [34]  CAI W H, LAI  T,  YE J S.  A spinneret as the key  component for   Compounds, 2020, 842: 155639.
                 surface-porous  graphene fibers in  high energy density  micro-   [53]  YADAV  H M, DEB NATH  N C, KIM J,  et al. Nickel-graphene
                 supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(9):   nanoplatelet deposited on carbon fiber as binder-free electrode for
                 5060-5066.                                        electrochemical supercapacitor application[J]. Polymers, 2020, 12(8):
            [35]  MA W J, LI W F, LI M, et al. Scalable microgel spinning of a three-   1666.
                 dimensional porous graphene fiber for high-performance flexible   [54]  XIE H S, LIU X F, WU R, et al. High-performance supercapacitor
                 supercapacitors[J]. Journal of Materials Chemistry A, 2020, 8(47):   with faster energy storage and long cyclic life based on CuO@MnO 2
                 25355-25362.                                      nano-core-shell  array on carbon  fiber surface[J]. ACS Applied
            [36]  ZHENG X H,  ZHANG  K, YAO  L,  et al. Hierarchically porous   Energy Materials, 2020, 3(8): 7325-7334.
                 sheath-core  graphene-based fiber-shaped supercapacitors  with high   [55]  NIU F, GUO R,  DANG  L  Q,  et al. Coral-like PEDOT nanotube
                 energy density[J]. Journal of Materials Chemistry  A, 2018, 6(3):   arrays on carbon fibers as  high-rate flexible supercapacitor
                 896-907.                                          electrodes[J]. ACS Applied Energy Materials, 2020, 3(8): 7794-7803.
            [37]  LU C H, MENG J, ZHANG J, et al. Three-dimensional hierarchically   [56]  WANG L, LIU R. Knitting controllable oxygen functionalized carbon
                 porous graphene fiber-shaped supercapacitors with high specific   fiber for ultrahigh capacitance wire-shaped supercapacitors[J]. ACS
                 capacitance and rate capability[J]. ACS Applied Materials & Interfaces,   Applied Materials & Interfaces, 2020, 12(40): 44866-44873.
                 2019, 11(28): 25205-25217.                    [57]  LI Y, LU C X, ZHANG S C, et al. Nitrogen- and oxygen-enriched
            [38]  MENG Y N, ZHAO  Y, HU C G,  et al. All-graphene core-sheath   3D hierarchical porous carbon fibers:  Synthesis and superior
                 microfibers for all-solid-state, stretchable fibriform supercapacitors   supercapacity[J]. Journal of Materials Chemistry A, 2015, 3(28):
                 and wearable electronic textiles[J]. Advanced Materials, 2013, 25(16):   14817-14825.
                 2326-2331.                                    [58]  SUN H, FU X M, XIE S L, et al. Electrochemical capacitors with
            [39]  WU G, TAN P F, WU X J,  et al. High-performance wearable   high output voltages that mimic electric eels[J]. Advanced Materials,
                 micro-supercapacitors based on microfluidic-directed nitrogen-doped   2016, 28(10): 2070-2076.
                 graphene fiber electrodes[J]. Advanced Functional Materials, 2017,   [59]  CHAI Z S, ZHANG N  N, SUN P,  et al. Tailorable and wearable
                 27(36): 1702493.                                  textile devices for solar energy harvesting and  simultaneous
            [40]  MA W J, CHEN S H, YANG S Y, et al. Hierarchical MnO 2 nanowire/   storage[J]. ACS Nano, 2016, 10(10): 9201-9207.
                 graphene hybrid fibers with excellent electrochemical performance   [60]  CHEN X L, SUN H, YANG Z B, et al. A novel “energy fiber” by
                 for flexible solid-state supercapacitors[J]. Journal of Power Sources,   coaxially integrating dye-sensitized solar cell and electrochemical
                 2016, 306: 481-488.                               capacitor[J]. Journal of Materials Chemistry A, 2014, 2(6): 1897-
            [41]  CHEN S B, WANG L,  HUANG M  M,  et al. Reduced graphene   1902.
                 oxide/Mn 3O 4 nanocrystals hybrid fiber for flexible all-solid-state   [61]  CHEN T, QIU L B, YANG Z B, et al. An integrated "energy wire" for
                 supercapacitor with excellent volumetric  energy  density[J].   both photoelectric conversion and energy storage[J]. Angewandte
                 Electrochimica Acta, 2017, 242: 10-18.            Chemie-International Edition, 2012, 51(48): 11977-11980.
            [42]  ZHENG X H, YAO L, QIU Y P, et al. Core-sheath porous polyaniline   [62]  LIANG J, ZHU G Y, WANG C  X,  et al. MoS 2-based all-purpose
                 nanorods/graphene  fiber-shaped supercapacitors with high specific   fibrous electrode and self-powering energy fiber for efficient energy
                 capacitance  and rate capability[J]. ACS Applied Energy Materials,   harvesting and storage[J]. Advanced Energy Materials, 2017, 7(3):
                 2019, 2(6): 4335-4344.                            1601208.
            [43]  ZHENG J H, MIAO F, PENG Y, et al. The fabrication of hierarchical   [63]  LIU K, CHEN Z L, LV T, et al. A self-supported graphene/carbon
                 nanostructured graphene/PPy fiber composites and its electrochemical   nanotube hollow fiber for integrated energy conversion and
                 properties[J]. Ionics, 2020, 26(5): 2667-2671.    storage[J]. Nano-Micro Letters, 2020, 12(1): 64.
            [44]  QU G X, CHENG J L, LI X D, et al. A fiber supercapacitor with high   [64]  FU Y P, WU H W, YE S Y, et al. Integrated power fiber for energy
                 energy density based on hollow graphene/conducting polymer fiber   conversion and storage[J]. Energy & Environmental Science, 2013,
                 electrode[J]. Advanced Materials, 2016, 28(19): 3646-3652.   6(3): 805-812.
            [45]  LI B, CHENG J  L, WANG Z P,  et al. Highly-wrinkled reduced   [65]  YAO Y, LV T, LI N, et al. Selected functionalization of continuous
                 graphene oxide-conductive polymer fibers for flexible fiber-shaped   graphene fibers for integrated energy conversion and  storage[J].
                 and interdigital-designed supercapacitors[J]. Journal of Power Sources,   Science Bulletin, 2020, 65(6): 486-495.
                 2018, 376: 117-124.                           [66]  WANG Z P, CHENG J L, HUANG H, et al. Flexible self-powered
            [46]  YANG Q Y, XU Z, FANG B, et al. MXene/graphene hybrid fibers   fiber-shaped photocapacitors with ultralong cyclelife and total energy
                 for high performance flexible supercapacitors[J]. Journal of Materials   efficiency of 5.1%[J]. Energy Storage Materials, 2020, 24: 255-264.
                 Chemistry A, 2017, 5(42): 22113-22119.        [67]  PU X, LI L X, LIU M M, et al. Wearable self-charging power textile
            [47]  HE N F, PATIL S, QU J G, et al. Effects of electrolyte mediation and   based on flexible yarn supercapacitors and fabric nanogenerators[J].
                 MXene size in fiber-shaped supercapacitors[J]. ACS Applied Energy   Advanced Materials, 2016, 28(1): 98-105.
                 Materials, 2020, 3(3): 2949-2958.             [68]  WEN Z, YEH M H, GUO H Y, et al. Self-powered textile for wearable
            [48]  TANG M, WU Y T, YANG J H, et al. Hierarchical core-shell fibers   electronics by hybridizing fiber-shaped nanogenerators, solar cells,
                 of graphene fiber/radially-aligned molybdenum disulfide nanosheet   and supercapacitors[J]. Science Advances, 2016, 2(10): e1600097.
                 arrays for highly efficient energy storage[J]. Journal of Alloys and   [69]  SONG Y, WANG  H B, CHENG X L,  et al. High-efficiency self-
                 Compounds, 2020, 828: 153622.                     charging smart bracelet for portable  electronics[J]. Nano Energy,
            [49]  TAO J  Y, LIU  N  S, MA W Z,  et al. Solid-state high performance   2019, 55: 29-36.
                 flexible supercapacitors based on polypyrrole-MnO 2-carbon fiber   [70]  CHO Y, PAK S, LEE Y G, et al. Hybrid smart fiber with spontaneous
                 hybrid structure[J]. Scientific Reports, 2013, 3: 2286.   self-charging mechanism for sustainable wearable  electronics[J].
            [50]  JIN H Y,  ZHOU L M, MAK C L,  et al. High-performance fiber-   Advanced Functional Materials, 2020, 30(13): 1908479.
                 shaped supercapacitors using carbon fiber thread (CFT)@polyanilne   [71]  WANG J, LI X H, ZI Y L, et al. A flexible fiber-based supercapacitor-
                 and functionalized CFT electrodes for wearable/stretchable   triboelectric-nanogenerator power system for wearable electronics[J].
                 electronics[J]. Nano Energy, 2015, 11: 662-670.   Advanced Materials, 2015, 27(33): 4830-4836.
   36   37   38   39   40   41   42   43   44   45   46