Page 177 - 《精细化工》2020年第2期
P. 177

第 2 期                   马   婧,等:  夹心型生物碳电极材料的制备及超级电容器性能                                  ·379·


                 techniques and applications[J]. Renewable and Sustainable Energy   constituents of castanea mollissima blume shell[J]. Chinese Journal
                 Reviews, 2018, 82: 1393-1414.                     of Pharmaceuticals(中国医药工业杂志), 2010, 41(2): 98-102.
            [3]   DYATKIN B, PRESSER V, HEON M, et al. Development of a green   [16]  LIU  W, LI X, LI N,  et al. Multi-heteroatom-doped hierarchical
                 supercapacitor composed entirely  of environmentally friendly   porous carbon derived from chestnut shell with superior performance
                 materials[J]. ChemSusChem, 2013, 6(12): 2269-2280.     in supercapacitors[J]. Journal of Alloys and Compounds, 2019, 790:
            [4]   MAJUMDAR D.  An overview on ruthenium oxide composites-   760-771.
                 challenging material for energy storage applications[J] Material   [17]  SHEN Z (申振), DAI Y T (戴亚堂), ZHANG H (张欢). Synthesis of
                 Science Research India, 2018, 15(1): 30-40.       microporous carbon-polyaniline nanowire composites  and their
            [5]   CANAL-RODRIGUEZ M, MENENDEZ J A,  ARENILLAS  A.   electrochemical capacitive performance[J]. Fine Chemicals (精细化
                 Performance of carbon xerogel-graphene hybrids as electrodes in   工), 2012, 29(12): 1182-1211.
                 aqueous supercapacitors[J]. Electrochimica Acta, 2018, 276: 28-36.     [18]  WU J, XIA M W, ZHANG X,  et al. Hierarchical porous carbon
            [6]  ZHAO Q ( 赵强 ), LYU M  G ( 吕满庚 ). Synthesis  of three-   derived from wood tar using crab as the template: Performance on
                 dimensional ordered polyaniline/graphene nanocomposite for super   supercapacitor[J]. Journal of Power Sources, 2020, 455: 227982.
                 capacitor electrode[J]. Fine Chemicals (精细化工), 2016, 33(6):   [19]  SUN L (孙立), XU L Y (徐立洋), LI H Y (李宏扬). Synthesis and
                 635-642.                                          energy storage properties of  nitrogen-doped  porous graphite
            [7]   LI D, CHANG G, ZONG L,  et al.  From double-helix structured   carbon[J]. Fine Chemicals (精细化工), 2018, 35(10): 1659-1666.
                 seaweed to S-doped carbon aerogel with ultra-high surface area for   [20]  WANG J H, ZHANG X, LI Z,  et al. Recent progress of biomass-
                 energy storage[J]. Energy Storage Materials, 2019, 17: 22-30.     derived carbon materials for supercapacitors[J]. Journal of Power
            [8]   ELMOUWAHIDI  A, ZAPATA-BENABITHE Z, CARRASCO-    Sources, 2020, 451: 227794.
                 MARIN F,  et al. Activated carbons  from KOH-activation of argan   [21]  LIU C F, LIU Y C, YI T Y, et al. Carbon materials for high-voltage
                 (Argania spinosa) seed shells as  supercapacitor electrodes[J].   supercapacitors[J]. Carbon, 2019, 145: 529-548.
                 Bioresour Technol, 2012, 111: 185-190.        [22]  GOMEZ-MARTIN A, GUTIERREZ-PARDO A, MARTINEZ-
            [9]   ZHANG S P, SU Y H, ZHU S G, et al. Effects of pretreatment and   FERNANDEZ J,  et al. Binder-free supercapacitor electrodes:
                 FeCl 3 preload of rice husk on synthesis of magnetic carbon   Optimization of  monolithic graphitized carbons  by reflux acid
                 composites by pyrolysis for supercapacitor application[J]. Journal of   treatment[J]. Fuel Processing Technology, 2020, 199: 106279.
                 Analytical and Applied Pyrolysis, 2018, 135: 22-31.     [23]  LIU  Y, XU  X M, SHAO Z P,  et al. Metal-organic frameworks
            [10]  ZENG L, LOU X, ZHANG J H, et al. Carbonaceous mudstone and   derived porous carbon, metal oxides and metal sulfides-based
                 lignin-derived activated carbon and its application for supercapacitor   compounds for supercapacitors application[J]. Energy Storage
                 electrode[J]. Surface and Coatings Technology, 2019, 357: 580-586.     Materials, 2020, 26: 1-22.
            [11]  WANG L, ZHU Q Z, ZHAO J S, et al. Nitrogen-doped hierarchical   [24]  ZHANG S, WU  C L, WU W,  et al. High  performance flexible
                 porous carbon for supercapacitors with high rate performance[J].   supercapacitors based on porous wood carbon  slices derived from
                 Microporous and Mesoporous Materials, 2019, 279: 439-445.     Chinese fir wood scraps[J]. Journal of Power Sources, 2019, 424: 1-7.
            [12]  LIU S B, ZHAO Y, ZHANG B H, et al. Nano-micro carbon spheres   [25]  LI Y J, WEI T, FAN Z J, et al. Nitrogen and sulfur co-doped porous
                 anchored on porous carbon derived from dual-biomass as high rate   carbon nanosheets derived from willow catkin for supercapacitors[J].
                 performance supercapacitor electrodes[J]. Journal Power Sources,   Nano Energy, 2016, 19: 165-175.
                 2018, 381: 116-126.                           [26]  WANG T Z,  TAN Y T, YANG  Y  L,  et al. Pomelo peels-derived
            [13]  LI  Y  J, WANG G L, WEI T,  et al. Nitrogen and sulfur  co-doped   porous activated carbon microsheets dual-doped with nitrogen and
                 porous carbon nanosheets derived from willow catkin for   phosphorus for high performance  electrochemical  capacitors[J].
                 supercapacitors[J]. Nano Energy, 2016, 19: 165-175.     Journal of Power Sources, 2018, 378: 499-510.
            [14]  JIANG L Y, NELSON G W, HAN S O,  et al. Natural cellulose   [27]  BAN C L, XU Z Y, WANG D W, et al. Porous layered carbon with
                 materials for supercapacitors[J]. Electrochimica  Acta, 2016, 192:   interconnected pore structure derived from reed membranes for
                 251-258.                                          supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019,
            [15]  JIA L (贾陆), XI F (席芳), WANG N (王娜),  et al. Chemical   7(12): 10742-10750.
   172   173   174   175   176   177   178   179   180   181   182