Page 177 - 《精细化工》2020年第2期
P. 177
第 2 期 马 婧,等: 夹心型生物碳电极材料的制备及超级电容器性能 ·379·
techniques and applications[J]. Renewable and Sustainable Energy constituents of castanea mollissima blume shell[J]. Chinese Journal
Reviews, 2018, 82: 1393-1414. of Pharmaceuticals(中国医药工业杂志), 2010, 41(2): 98-102.
[3] DYATKIN B, PRESSER V, HEON M, et al. Development of a green [16] LIU W, LI X, LI N, et al. Multi-heteroatom-doped hierarchical
supercapacitor composed entirely of environmentally friendly porous carbon derived from chestnut shell with superior performance
materials[J]. ChemSusChem, 2013, 6(12): 2269-2280. in supercapacitors[J]. Journal of Alloys and Compounds, 2019, 790:
[4] MAJUMDAR D. An overview on ruthenium oxide composites- 760-771.
challenging material for energy storage applications[J] Material [17] SHEN Z (申振), DAI Y T (戴亚堂), ZHANG H (张欢). Synthesis of
Science Research India, 2018, 15(1): 30-40. microporous carbon-polyaniline nanowire composites and their
[5] CANAL-RODRIGUEZ M, MENENDEZ J A, ARENILLAS A. electrochemical capacitive performance[J]. Fine Chemicals (精细化
Performance of carbon xerogel-graphene hybrids as electrodes in 工), 2012, 29(12): 1182-1211.
aqueous supercapacitors[J]. Electrochimica Acta, 2018, 276: 28-36. [18] WU J, XIA M W, ZHANG X, et al. Hierarchical porous carbon
[6] ZHAO Q ( 赵强 ), LYU M G ( 吕满庚 ). Synthesis of three- derived from wood tar using crab as the template: Performance on
dimensional ordered polyaniline/graphene nanocomposite for super supercapacitor[J]. Journal of Power Sources, 2020, 455: 227982.
capacitor electrode[J]. Fine Chemicals (精细化工), 2016, 33(6): [19] SUN L (孙立), XU L Y (徐立洋), LI H Y (李宏扬). Synthesis and
635-642. energy storage properties of nitrogen-doped porous graphite
[7] LI D, CHANG G, ZONG L, et al. From double-helix structured carbon[J]. Fine Chemicals (精细化工), 2018, 35(10): 1659-1666.
seaweed to S-doped carbon aerogel with ultra-high surface area for [20] WANG J H, ZHANG X, LI Z, et al. Recent progress of biomass-
energy storage[J]. Energy Storage Materials, 2019, 17: 22-30. derived carbon materials for supercapacitors[J]. Journal of Power
[8] ELMOUWAHIDI A, ZAPATA-BENABITHE Z, CARRASCO- Sources, 2020, 451: 227794.
MARIN F, et al. Activated carbons from KOH-activation of argan [21] LIU C F, LIU Y C, YI T Y, et al. Carbon materials for high-voltage
(Argania spinosa) seed shells as supercapacitor electrodes[J]. supercapacitors[J]. Carbon, 2019, 145: 529-548.
Bioresour Technol, 2012, 111: 185-190. [22] GOMEZ-MARTIN A, GUTIERREZ-PARDO A, MARTINEZ-
[9] ZHANG S P, SU Y H, ZHU S G, et al. Effects of pretreatment and FERNANDEZ J, et al. Binder-free supercapacitor electrodes:
FeCl 3 preload of rice husk on synthesis of magnetic carbon Optimization of monolithic graphitized carbons by reflux acid
composites by pyrolysis for supercapacitor application[J]. Journal of treatment[J]. Fuel Processing Technology, 2020, 199: 106279.
Analytical and Applied Pyrolysis, 2018, 135: 22-31. [23] LIU Y, XU X M, SHAO Z P, et al. Metal-organic frameworks
[10] ZENG L, LOU X, ZHANG J H, et al. Carbonaceous mudstone and derived porous carbon, metal oxides and metal sulfides-based
lignin-derived activated carbon and its application for supercapacitor compounds for supercapacitors application[J]. Energy Storage
electrode[J]. Surface and Coatings Technology, 2019, 357: 580-586. Materials, 2020, 26: 1-22.
[11] WANG L, ZHU Q Z, ZHAO J S, et al. Nitrogen-doped hierarchical [24] ZHANG S, WU C L, WU W, et al. High performance flexible
porous carbon for supercapacitors with high rate performance[J]. supercapacitors based on porous wood carbon slices derived from
Microporous and Mesoporous Materials, 2019, 279: 439-445. Chinese fir wood scraps[J]. Journal of Power Sources, 2019, 424: 1-7.
[12] LIU S B, ZHAO Y, ZHANG B H, et al. Nano-micro carbon spheres [25] LI Y J, WEI T, FAN Z J, et al. Nitrogen and sulfur co-doped porous
anchored on porous carbon derived from dual-biomass as high rate carbon nanosheets derived from willow catkin for supercapacitors[J].
performance supercapacitor electrodes[J]. Journal Power Sources, Nano Energy, 2016, 19: 165-175.
2018, 381: 116-126. [26] WANG T Z, TAN Y T, YANG Y L, et al. Pomelo peels-derived
[13] LI Y J, WANG G L, WEI T, et al. Nitrogen and sulfur co-doped porous activated carbon microsheets dual-doped with nitrogen and
porous carbon nanosheets derived from willow catkin for phosphorus for high performance electrochemical capacitors[J].
supercapacitors[J]. Nano Energy, 2016, 19: 165-175. Journal of Power Sources, 2018, 378: 499-510.
[14] JIANG L Y, NELSON G W, HAN S O, et al. Natural cellulose [27] BAN C L, XU Z Y, WANG D W, et al. Porous layered carbon with
materials for supercapacitors[J]. Electrochimica Acta, 2016, 192: interconnected pore structure derived from reed membranes for
251-258. supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019,
[15] JIA L (贾陆), XI F (席芳), WANG N (王娜), et al. Chemical 7(12): 10742-10750.