Page 56 - 《精细化工》2020年第2期
P. 56

·258·                             精细化工   FINE CHEMICALS                                 第 38 卷

            结构和官能团功能化等能够提高传感层和酸性气体                                 production of metal organic frameworks (MOF) for CO 2
            的相互作用和特定选择性,能够改善 MOFs 的导电                              adsorption[J]. Science of the Total Environment, 2020, 707: 135090.
                                                               [10]  XUE D X, WANG Q, BAI J F. Amide-functionalized metal-organic
            性,利用其导电性和中空结构等可以大大提高传感                                 frameworks: Syntheses, structures and improved gas storage and
            器对气体的传感性能。目前,基于 MOFs 的化学电                              separation properties[J]. Coordination Chemistry Reviews, 2019,
                                                                   378: 2-16.
            阻传感器对酸性气体的研究还比较少。对酸性气体
                                                               [11]  CAI W, WANG J Q, CHU C C, et al. Metal organic framework-based
            研究的方向主要是单一 MOFs、MOFs 的合成后修饰                            stimuli-responsive systems for drug delivery[J]. Advanced Science,
            和 MOFs 的衍生材料作为传感材料。研究者可以探                              2019, 6(1): 1801526.
                                                               [12]  CHEN W, WU C S. Synthesis, functionalization, and applications of
            索更多其他多功能材料和 MOFs 结合,通过合理的                              metal-organic frameworks in  biomedicine[J]. Dalton Transactions,
            设计来提高传感器对不同环境的抗干扰能力、长期                                 2018, 47(7): 2114-2133.
                                                               [13]  ZENG J Y (曾锦跃), WANG X S (王小双), ZHANG X Z (张先正),
            稳定性和在室温下的灵敏度,使传感器向小型化、
                                                                   et al. Research progress in functional metal-organic frameworks for
            可携化迈近,实现商业应用。目前,基于 MOFs 材                              tumor therapy[J]. Acta  Chimica Sinica (化学学报), 2019, 77(11):
            料的酸性气体传感器的研究可以发现:                                      1156-1163.
                                                               [14]  MAINA J W, POZO-GONZALO C, KONG L X, et al. Metal organic
                (1)有些 MOFs 可以提高传感器的水稳性。                            framework based catalysts for CO 2  conversion[J]. Materials
                (2)MOFs 的合成后修饰可以提高传感器对特                            Horizons, 2017, 4(3): 345-361.
            定气体的选择性。                                           [15]  JIAO L, WANG Y, JIANG H L, et al. Metal-organic frameworks as
                                                                   platforms for catalytic applications[J].  Advanced Materials, 2018,
                (3)多种 MOFs 传感器组成的传感阵列可以用                           30(37): 1703663.
            于混合气体的传感。                                          [16]  ZHAO J B (赵建波),  YUAN H F (袁海丰), XIE B (谢冰),  et al.
                                                                   Progress in catalytic application of metal-organic framework[J]. New
                (4)导电 MOFs 和柔性基底的结合有望实现可                           Chemical Materials (化工新型材料), 2020, 48(2): 50-54.
            穿戴传感。                                              [17]  CHIDAMBARAM A, STYLIANOU K C. Electronic metal-organic
                (5)网状导电结构和材料的等网状合成有利于                              framework sensors[J]. Inorganic Chemistry Frontiers, 2018, 5(5):
                                                                   979-998.
            实现低功耗传感。                                           [18]  VARGHESE A M, KARANIKOLOS G N. CO 2 capture adsorbents
                (6)单组分或多组分纳米粒子的掺杂可以增强                              functionalized by amine-bearing polymers: A review[J]. International
                                                                   Journal of Greenhouse Gas Control, 2020, 96: 103005.
            MOFs 传感器的稳定性和提高响应。
                                                               [19]  STASSEN L, DOU J H, HENDON C, et al. Chemiresistive sensing
                (7)MOFs 和其他多功能传感材料的复合可以                            of ambient CO 2 by an autogenously hydrated Cu 3 (hexaiminobenzene) 2
            改善传统材料存在的问题,从而优化传感性能。                                  framework[J]. ACS Central Science, 2019, 5(8): 1425-1431.
                                                               [20]  FREUND P, MIELEWCZYK L,  RAUCHE M,  et al. MIL-53(Al)/
                (8)MOFs 材料的经济性、热稳定性、化学稳                            carbon films for CO 2-sensing at high pressure[J]. ACS Sustainable
            定性和导电性等问题仍然存在挑战,需要进一步探                                 Chemistry & Engineering, 2019, 7(4): 4012-4018.
                                                               [21]  ZHENG Y,  WAN S,  YANG J,  et al. Recent  advances in
            索和设计更合适的方案及策略。
                                                                   post-synthetic modification of metal-organic frameworks: New types
                                                                   and tandem reactions[J]. Coordination Chemistry Reviews, 2019,
            参考文献:                                                  378: 500-512.
            [1]   LEE E, YOON Y  S, KIM D J. Two-dimensional transition metal   [22]  DMELLO  M  E, SUNDARAM N G,  SINGH A,  et al. An  amine
                 dichalcogenides and metal oxide hybrids for gas  sensing[J].  ACS   functionalized zirconium  metal-organic framework as  an effective
                 Sensors, 2018, 3(10): 2045-2060.                  chemiresistive sensor for acidic gases[J]. Chemical Communications,
            [2]   CHOI S J, KIM I D. Recent developments in 2D nanomaterials for   2019, 55(3): 349-352.
                 chemiresistive-type gas sensors[J].  Electronic Materials Letters,   [23]  SURYA S G, BHANOTH S, MAJHI S M,  et al. A  silver
                 2018, 14(3): 221-260.                             nanoparticle-anchored UiO-66(Zr) metal-organic framework (MOF)-
            [3]   ZANG  X N,  ZHOU Q, CHANG J Y,  et al.  Graphene and carbon   based capacitive H 2S gas sensor[J].  Crystengcomm, 2019, 21(47):
                 nanotube (CNT) in MEMS/NEMS applications[J]. Microelectronic   7303-7312.
                 Engineering, 2015, 132: 192-206.              [24]  PARK S  Y, KIM Y, KIM T,  et al. Chemoresistive materials for
            [4]   LIU G, WANG T. Research progress in thermoelectric materials for   electronic nose: Progress, perspectives, and challenges[J].  Infomat,
                 sensor application[J]. Acta Chimica Sinica, 2017, 75(11): 1029-1035.     2019, 1(3): 289-316.
            [5]   ZHU Q (朱琴), ZHANG Y M (张裕敏), HU C Y (胡昌义), et al.   [25]  KO M, AYKANAT A, SMITH M K,  et al. Drawing sensors with
                 Progress of research on modified oxide semiconductor gas sensor[J].   ball-milled blends of metal-organic frameworks and  graphite[J].
                 Journal of Functional Materials (功能材料), 2014, 45(17): 17017-   Sensors, 2017, 17(10): 2192.
                 17021.                                        [26]  KENRY YEO J  C, LIM C  T.  Emerging flexible and wearable
            [6]   KOROTCENKOV G, CHO  B K. Metal oxide composites in   physical sensing platforms for healthcare and biomedical
                 conductometric gas sensors: Achievements and challenges[J].   applications[J]. Microsystems & Nanoengineering, 2016, 2: 16043.
                 Sensors and Actuators B-Chemical, 2017, 244: 182-210.     [27]  XU K  C, LU Y,  TAKEI K.  Multifunctional skin-Inspired flexible
            [7]   KOO W T, JANG J S, KIM L D.  Metal-organic frameworks for   sensor systems for wearable  electronics[J]. Advanced Materials
                 chemiresistive sensors[J]. Chem, 2019, 5(8): 1938-1963.     Technologies, 2019, 4(3): 1800628.
            [8]   QIAN B B (钱彬彬), LI N (李娜), CHANG Z (常泽), et al. Porous   [28]  GAO W,  OTA H, KIRIYA  D,  et al.  Flexible electronics toward
                 coordination  polymers: Development and research progress[J].   wearable sensing[J]. Accounts of Chemical  Research, 2019, 52(3):
                 Scientia Sinica Chimica (中国科学:  化学), 2019, 49(11): 1361-1376.     523-533.
            [9]   GHANBARI T, ABNISA F, DAUD W M A W. A review on                             (下转第 293 页)
   51   52   53   54   55   56   57   58   59   60   61