Page 56 - 《精细化工》2020年第2期
P. 56
·258· 精细化工 FINE CHEMICALS 第 38 卷
结构和官能团功能化等能够提高传感层和酸性气体 production of metal organic frameworks (MOF) for CO 2
的相互作用和特定选择性,能够改善 MOFs 的导电 adsorption[J]. Science of the Total Environment, 2020, 707: 135090.
[10] XUE D X, WANG Q, BAI J F. Amide-functionalized metal-organic
性,利用其导电性和中空结构等可以大大提高传感 frameworks: Syntheses, structures and improved gas storage and
器对气体的传感性能。目前,基于 MOFs 的化学电 separation properties[J]. Coordination Chemistry Reviews, 2019,
378: 2-16.
阻传感器对酸性气体的研究还比较少。对酸性气体
[11] CAI W, WANG J Q, CHU C C, et al. Metal organic framework-based
研究的方向主要是单一 MOFs、MOFs 的合成后修饰 stimuli-responsive systems for drug delivery[J]. Advanced Science,
和 MOFs 的衍生材料作为传感材料。研究者可以探 2019, 6(1): 1801526.
[12] CHEN W, WU C S. Synthesis, functionalization, and applications of
索更多其他多功能材料和 MOFs 结合,通过合理的 metal-organic frameworks in biomedicine[J]. Dalton Transactions,
设计来提高传感器对不同环境的抗干扰能力、长期 2018, 47(7): 2114-2133.
[13] ZENG J Y (曾锦跃), WANG X S (王小双), ZHANG X Z (张先正),
稳定性和在室温下的灵敏度,使传感器向小型化、
et al. Research progress in functional metal-organic frameworks for
可携化迈近,实现商业应用。目前,基于 MOFs 材 tumor therapy[J]. Acta Chimica Sinica (化学学报), 2019, 77(11):
料的酸性气体传感器的研究可以发现: 1156-1163.
[14] MAINA J W, POZO-GONZALO C, KONG L X, et al. Metal organic
(1)有些 MOFs 可以提高传感器的水稳性。 framework based catalysts for CO 2 conversion[J]. Materials
(2)MOFs 的合成后修饰可以提高传感器对特 Horizons, 2017, 4(3): 345-361.
定气体的选择性。 [15] JIAO L, WANG Y, JIANG H L, et al. Metal-organic frameworks as
platforms for catalytic applications[J]. Advanced Materials, 2018,
(3)多种 MOFs 传感器组成的传感阵列可以用 30(37): 1703663.
于混合气体的传感。 [16] ZHAO J B (赵建波), YUAN H F (袁海丰), XIE B (谢冰), et al.
Progress in catalytic application of metal-organic framework[J]. New
(4)导电 MOFs 和柔性基底的结合有望实现可 Chemical Materials (化工新型材料), 2020, 48(2): 50-54.
穿戴传感。 [17] CHIDAMBARAM A, STYLIANOU K C. Electronic metal-organic
(5)网状导电结构和材料的等网状合成有利于 framework sensors[J]. Inorganic Chemistry Frontiers, 2018, 5(5):
979-998.
实现低功耗传感。 [18] VARGHESE A M, KARANIKOLOS G N. CO 2 capture adsorbents
(6)单组分或多组分纳米粒子的掺杂可以增强 functionalized by amine-bearing polymers: A review[J]. International
Journal of Greenhouse Gas Control, 2020, 96: 103005.
MOFs 传感器的稳定性和提高响应。
[19] STASSEN L, DOU J H, HENDON C, et al. Chemiresistive sensing
(7)MOFs 和其他多功能传感材料的复合可以 of ambient CO 2 by an autogenously hydrated Cu 3 (hexaiminobenzene) 2
改善传统材料存在的问题,从而优化传感性能。 framework[J]. ACS Central Science, 2019, 5(8): 1425-1431.
[20] FREUND P, MIELEWCZYK L, RAUCHE M, et al. MIL-53(Al)/
(8)MOFs 材料的经济性、热稳定性、化学稳 carbon films for CO 2-sensing at high pressure[J]. ACS Sustainable
定性和导电性等问题仍然存在挑战,需要进一步探 Chemistry & Engineering, 2019, 7(4): 4012-4018.
[21] ZHENG Y, WAN S, YANG J, et al. Recent advances in
索和设计更合适的方案及策略。
post-synthetic modification of metal-organic frameworks: New types
and tandem reactions[J]. Coordination Chemistry Reviews, 2019,
参考文献: 378: 500-512.
[1] LEE E, YOON Y S, KIM D J. Two-dimensional transition metal [22] DMELLO M E, SUNDARAM N G, SINGH A, et al. An amine
dichalcogenides and metal oxide hybrids for gas sensing[J]. ACS functionalized zirconium metal-organic framework as an effective
Sensors, 2018, 3(10): 2045-2060. chemiresistive sensor for acidic gases[J]. Chemical Communications,
[2] CHOI S J, KIM I D. Recent developments in 2D nanomaterials for 2019, 55(3): 349-352.
chemiresistive-type gas sensors[J]. Electronic Materials Letters, [23] SURYA S G, BHANOTH S, MAJHI S M, et al. A silver
2018, 14(3): 221-260. nanoparticle-anchored UiO-66(Zr) metal-organic framework (MOF)-
[3] ZANG X N, ZHOU Q, CHANG J Y, et al. Graphene and carbon based capacitive H 2S gas sensor[J]. Crystengcomm, 2019, 21(47):
nanotube (CNT) in MEMS/NEMS applications[J]. Microelectronic 7303-7312.
Engineering, 2015, 132: 192-206. [24] PARK S Y, KIM Y, KIM T, et al. Chemoresistive materials for
[4] LIU G, WANG T. Research progress in thermoelectric materials for electronic nose: Progress, perspectives, and challenges[J]. Infomat,
sensor application[J]. Acta Chimica Sinica, 2017, 75(11): 1029-1035. 2019, 1(3): 289-316.
[5] ZHU Q (朱琴), ZHANG Y M (张裕敏), HU C Y (胡昌义), et al. [25] KO M, AYKANAT A, SMITH M K, et al. Drawing sensors with
Progress of research on modified oxide semiconductor gas sensor[J]. ball-milled blends of metal-organic frameworks and graphite[J].
Journal of Functional Materials (功能材料), 2014, 45(17): 17017- Sensors, 2017, 17(10): 2192.
17021. [26] KENRY YEO J C, LIM C T. Emerging flexible and wearable
[6] KOROTCENKOV G, CHO B K. Metal oxide composites in physical sensing platforms for healthcare and biomedical
conductometric gas sensors: Achievements and challenges[J]. applications[J]. Microsystems & Nanoengineering, 2016, 2: 16043.
Sensors and Actuators B-Chemical, 2017, 244: 182-210. [27] XU K C, LU Y, TAKEI K. Multifunctional skin-Inspired flexible
[7] KOO W T, JANG J S, KIM L D. Metal-organic frameworks for sensor systems for wearable electronics[J]. Advanced Materials
chemiresistive sensors[J]. Chem, 2019, 5(8): 1938-1963. Technologies, 2019, 4(3): 1800628.
[8] QIAN B B (钱彬彬), LI N (李娜), CHANG Z (常泽), et al. Porous [28] GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward
coordination polymers: Development and research progress[J]. wearable sensing[J]. Accounts of Chemical Research, 2019, 52(3):
Scientia Sinica Chimica (中国科学: 化学), 2019, 49(11): 1361-1376. 523-533.
[9] GHANBARI T, ABNISA F, DAUD W M A W. A review on (下转第 293 页)