Page 36 - 《精细化工》2021年第4期
P. 36
·670· 精细化工 FINE CHEMICALS 第 38 卷
续表 1
聚合物基质 协同改性材料 涂层厚度 腐蚀环境 腐蚀时间 质量分数 防腐效果 文献
CeO 2 EP — — 3.5%NaCl 30 d 30 g/L 阻抗提升约 2 个数量级 [46]
EP — 40 天然海水 15 d 10.0 R ct 值提升约 0.6 个数量级 [47]
EP 表面改性 200±5 3.5%NaCl 200 h 0.5 R c 值提升约 3 个数量级 [48]
EP 表面改性 70 3.5%NaCl 45 d 2 g/L 阻抗提升约 1.4 个数量级 [49]
EP NiWO 4 65±5 3.5%NaCl 45 d 3.0 阻抗提升约 1 个数量级 [50]
EP GO 75±5 3.5%NaCl 70 d 0.15 阻抗提升约 3 个数量级 [51]
EP 缓蚀剂 50±5 3.5%NaCl 5 d 5.0 阻抗提升约 3 个数量级 [52]
EP 缓蚀剂 30±2 3.5%NaCl 3 d 0.5 R c 值提升约 1 个数量级 [53]
注:阻抗中数量级的计算公式为=lg(改性涂层阻抗值)–lg(EP 涂层阻抗值);腐蚀环境中 3.0%和 3.5%为质量分数;R c 为涂层电阻;
R ct 为电荷转移电阻;I corr 为腐蚀电流密度。
6 结束语与展望 Organic Coatings, 2012, 73: 129-141.
[6] POURHASHEM S, VAEZI M, RASHIDI A. Investigating the effect
of SiO 2-graphene oxide hybrid as inorganic nanofiller on corrosion
纳米氧化物不仅具有优异的耐磨、耐腐蚀、高
protection properties of epoxy coatings[J]. Surface and Coatings
硬度等特点,还兼具纳米材料的尺寸效应、表面效 Technology, 2017, 311: 282-294.
应和宏观量子隧道效应等特殊结构性质。因此,纳 [7] JEELANI P, MULAY P, VENKAT R, et al. Multifaceted application
of silica nanoparticles: A review[J]. Silicon, 2019,12(10): 1337-1354.
米氧化物在改性 EP 腐蚀性的同时,还能够增强涂 [8] DENG S X (邓三喜). Epoxy resin coatings modified by doped
层的机械性能,有效提高涂层的防护性能。现阶段, Nano-SiO 2[D]. Haikou: Hainan University (海南大学), 2019.
[9] PALRAJ S, SELVARAJ M, MARUTHAN K, et al. Corrosion and
纳米氧化物在 EP 涂层领域占据着重要的地位,但仍
wear resistance behavior of nano-silica epoxy composite coatings[J].
存在着一些问题,具体表现在以下几方面:(1)纳米 Progress in Organic Coatings, 2015, 81: 132-139.
氧化物在引入 EP 的过程中易团聚,大大降低了 EP [10] WANG J P (王佳平), QU W J (曲文娟), LEI Y N (雷云娜), et al.
Preparation of epoxy/nano-silica composite coating and study on its
涂层的防护性能。因此,需要进一步研究纳米氧化 anticorrosion property[J].Electroplating & Finishing (电镀与涂饰),
物与 EP 以及金属基体之间的相容性问题。(2)每 2020, 39(6): 299-305.
[11] CONRADI M, KOCIJIAN A, KEK-MERL D, et al. Mechanical and
种纳米氧化物颗粒都具有自身独特的性质,且随着
anticorrosion properties of nanosilica-filled epoxy-resin composite
使用环境范围的不断延伸,单一纳米粒子已经难以 coatings[J]. Applied Surface Science, 2014, 292: 432-437.
满足复杂环境下的使用要求。因此需要研究不同纳 [12] KHODABAKHSHI J, MAHDAVI H, NAJAFI F. Investigation of
viscoelastic and active corrosion protection properties of inhibitor
米材料的联合作用机制,实现多种氧化物复配或与 modified silica nanoparticles/epoxy nanocomposite coatings on
其他材料复配应用获得多功能防护涂层。(3)结合 carbon steel[J]. Corrosion Science, 2018, 147: 128-140.
[13] THI N, MAI T, THI P, et al. Enhanced anti-corrosion protection of
实际应用环境,进一步研究纳米材料/EP 复合材料
carbon steel with silica-polypyrrole-dodecyl sulfate incorporated into
的结构与性能的关系和作用机理,使纳米氧化物/EP epoxy coating[J]. Journal of Electronic Materials, 2019, 48(6):
复合材料的应用更加广泛。 3931-3938.
[14] BOUIBED A, DOUFNOUNE R. Synthesis and characterization of
参考文献: hybrid materials based on graphene oxide and silica nanoparticles
and their effect on the corrosion protection properties of epoxy resin
[1] CASTELLON J, NGUYEN H N, AGNEL S, et al. Electrical coatings[J]. Journal of Adhesion Science and Technology, 2019,33(8):
properties analysis of micro and nano composite epoxy resin 1-27.
materials[J]. IEEE Transactions on Dielectrics and Electrical [15] GHOSH P, PATHAK A, GOYAT M, et al. Influence of nanoparticle
Insulation, 2011, 18(3): 651-658. weight fraction on morphology and thermal properties of epoxy/TiO 2
[2] SHI X M, NGUYEN T A, SUO Z Y, et al. Effect of nanoparticles on nanocomposite[J]. Journal of Reinforced Plastics and Composites,
the anticorrosion and mechanical properties of epoxy coating[J]. 2012, 31(17): 1180-1188.
Surface and Coatings Technology, 2009, 204(3): 237-245. [16] KAPILASHRAMI M, ZHANG Y, LIU Y S, et al. Probing the optical
[3] POURHASHEM S, VAEZI M, RASHIDI A, et al. Exploring property and electronic structure of TiO 2 nanomaterials for renewable
corrosion protection properties of solvent based epoxy-graphene energy applications[J]. Chemical Reviews, 2014, 114(19): 9662-9707.
oxide nanocomposite coatings on mild steel[J]. Corrosion Science, [17] CONRADI M, KOCIJAN A, KOSEC T, et al. Manipulation of TiO 2
2016, 115: 78-92. nanoparticle/polymer coatings wettability and friction in different
[4] MIRMOHSENI A, ZAVAREH S. Preparation and characterization of environments[J]. Materials, 2020, 13(7): 1702.
an epoxy nanocomposite toughened by a combination of thermoplastic, [18] WANG N, FU W L, SUN M, et al. Effect of different structured TiO 2
layered and particulate nanofillers[J]. Materials and Design, 2010, particle on anticorrosion properties of waterborne epoxy coatings[J].
31(6): 2699-2706. Corrosion Engineering Science and Technology, 2016, 51(5): 365-372.
[5] HU R G, ZHANG S, BU J F, et al. Recent progress in corrosion [19] WANG N, FU W L, ZHANG J, et al. Corrosion performance of
protection of magnesium alloys by organic coatings[J]. Progress in waterborne epoxy coatings containing polyethylenimine treated