Page 48 - 《精细化工》2021年第4期
P. 48
·682· 精细化工 FINE CHEMICALS 第 38 卷
2005, 1(3): 269-276. meso-carbon microbeads by oxygen plasma[J]. Bulletin of the
[11] DUDUTA M, HO B, WOOD V, et al. Semi-solid lithium rechargeable Chemical Society of Japan, 1985, 58(9): 2638-2640.
flow battery[J]. Advanced Energy Materials, 2011, 1: 511-516. [32] SINGH P, PAL K. Activated carbon-polyaniline composite active
[12] ALOTTO P, GUARNIERI M, MORO F. Redox flow batteries for the material slurry electrode for high capacitance, improved rheological
storage of renewable energy: A review[J]. Renewable and Sustainable performance electrochemical flow capacitor[J]. Electrochimica Acta,
Energy Reviews, 2014, 29: 325-335. 2020, 354: 136719.
[13] KAUS M, KOWAL J, SAUER D U. Modelling the effects of charge [33] KAN K (阚侃), FU D (付东), WANG J (王珏), et al. Preparation and
redistribution during self-discharge of supercapacitors[J]. Electrochimica capacitive performance of interconnected composite nanowires based
Acta, 2010, 55(25): 7516-7523. on polyaniline coated carbon nanofiber[J]. Fine Chemicals (精细化
[14] MILLER J, RBURKE A. Electrochemical capacitors: Challenges and 工), 2019, 36(10): 2060-2067.
opportunities for real-world applications[J]. Electrochemical Society [34] LIU H, LIAO L B, LU Y C, et al. High energy density aqueous li-ion
Interface, 2008, 17: 53-57. flow capacitor[J]. Advanced Energy Materials, 2017, 7: 1601248.
[15] DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechargeable [35] TOUPIN M, BROUSSE T, BÉLANGER D. Charge storage mechanism
flow battery[J]. Advanced Energy Materials, 2011, 1(4): 511-516. of MnO 2 electrode used in aqueous electrochemical capacitor[J].
[16] WEBER A Z, MENCH M M, MEYERS J P, et al. Redox flow batteries: Chemistry of Materials, 2004, 16(16): 3184-3190.
A review[J]. Journal of Applied Electrochemistry, 2011, 41(10): 1137- [36] LIU H, ZHAO K. Asymmetric flow electrochemical capacitor with
1164. high energy densities based on birnessite-type manganese oxide
[17] HATZELL K, FAN L, BEIDAGHI M, et al. Composite manganese nanosheets and activated carbon slurries[J]. Journal of Materials
oxide percolating networks as a suspension electrode for an asymmetric Science, 2016, 51(20): 9306-9313.
flow capacitor[J]. ACS Applied Materials & Interfaces, 2014, 6(11): [37] TOROP J, SUMMER F, ZADIN V, et al. Low concentrated
8886-8893. carbonaceous suspensions assisted with carboxymethyl cellulose as
[18] BOOTA M, HATZELL K B, ALHABEB M, et al. Graphene-containing electrode for electrochemical flow capacitor[J]. The European Physical
flowable electrodes for capacitive energy storage[J]. Carbon, 2015, Journal E, 2019, 42(1): 8.
92: 142-149. [38] SENTHILKUMAR S T, SELVAN R K, MELO J S. Redox additive/
[19] CAMPOS J W, BEIDAGHI M, HATZELL K B, et al. Investigation active electrolytes: A novel approach to enhance the performance of
of carbon materials for use as a flowable electrode in electrochemical supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(40):
flow capacitors[J]. Electrochimica Acta, 2013, 98: 123-130. 12386-12394.
[20] ZHANG C F, HATZELL K B, BOOTA M, et al. Highly porous [39] YOON H, KIM H J, YOO J, et al. Pseudocapacitive slurry electrodes
carbon spheres for electrochemical capacitors and capacitive flowable using redox-active quinone for high-performance flow capacitors: An
suspension electrodes[J]. Carbon, 2014, 77: 155-164. atomic-level understanding of pore texture and capacitance
[21] BOOTA M, HATZELL K, BEIDAGHI M, et al. Activated carbon enhancement[J]. J Mater Chem A, 2015, 3(46): 23323-23332.
spheres as a flowable electrode in electrochemical flow capacitors[J]. [40] HUNT C, MATTEJAT M, ANDERSON C, et al. Symmetric
Journal of the Electrochemical Society, 2014, 161: A1078-A1083. phthalocyanine charge carrier for dual redox flow battery/capacitor
[22] QU Q T, WANG B, YANG L C, et al. Study on electrochemical applications[J]. ACS Applied Energy Materials, 2019, 2(8): 5391-
performance of activated carbon in aqueous Li 2SO 4, Na 2SO 4 and 5396.
K 2SO 4 electrolytes[J]. Electrochemistry Communications, 2008, 10(10): [41] DUAN W T, HUANG J H, KOWALSKI J A, et al. “Wine-dark sea”
1652-1655. in an organic flow battery: Storing negative charge in 2,1,3-
[23] BOOTA M, HATZELL K B, KUMBUR E C, et al. Towards benzothiadiazole radicals leads to improved cyclability[J]. ACS
high-energy-density pseudocapacitive flowable electrodes by the Energy Letters, 2017, 2(5): 1156-1161.
incorporation of hydroquinone[J]. ChemSusChem, 2015, 8(5): 835- [42] YANG Z, ZHANG J, KINTNER M M C, et al. Electrochemical energy
843. storage for green grid[J]. Chem Rev, 2011, 111(5): 3577-3613.
[24] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse [43] HATZELL K B, BOOTA M, GOGOTSI Y. Materials for suspension
silica spheres in the micron size range[J]. Journal of Colloid and (semi-solid) electrodes for energy and water technologies[J]. Chem
Interface Science, 1968, 26(1): 62-69. Soc Rev, 2015, 44(23): 8664-8687.
[25] JEONG H M, LEE J W, SHIN W H, et al. Nitrogen-doped graphene [44] SPAHR M E, GOERS D, LEONE A, et al. Development of carbon
for high-performance ultracapacitors and the importance of nitrogen- conductive additives for advanced lithium ion batteries[J]. Journal of
doped sites at basal planes[J]. Nano Lett, 2011, 11(6): 2472-2477. Power Sources, 2011, 196(7): 3404-3413.
[26] JIANG B J, TIAN C G, WANG L, et al. Highly concentrated, stable [45] YOUSSRY M, MADEC L, SOUDAN P, et al. Non-aqueous carbon
nitrogen-doped graphene for supercapacitors: Simultaneous doping black suspensions for lithium-based redox flow batteries: Rheology
and reduction[J]. Applied Surface Science, 2012, 258(8): 3438-3443. and simultaneous rheo-electrical behavior[J]. Physical Chemistry
[27] HOU S J, WANG M, XU X T, et al. Nitrogen-doped carbon spheres: Chemical Physics, 2013, 15(34): 14476-14486.
A new high-energy-density and long-life pseudo-capacitive electrode [46] AKUZUM B, HUDSON D, EICHFELD D, et al. Reticulated carbon
material for electrochemical flow capacitor[J]. Journal of Colloid and electrodes for improved charge transport in electrochemical flow
Interface Science, 2017, 491: 161-166. capacitors[J]. Journal of the Electrochemical Society, 2018, 165:
[28] WANG Z, YAN T T, FANG J H, et al. Nitrogen-doped porous carbon A2519-A2527.
derived from a bimetallic metal-organic framework as highly efficient [47] QI Z X, KOENIG G M. Review article: Flow battery systems with
electrodes for flow-through deionization capacitors[J]. Journal of solid electroactive materials[J]. Journal of Vacuum Science &
Materials Chemistry A, 2016, 4(28): 10858-10868. Technology B, 2017, 35: 040801.
[29] LEI Z K, LI Y, ZHANG L Q, et al. Nitrogen-doped porous carbon [48] HATZELL K B, BOOTA M, KUMBUR E C, et al. Flowable
with a hierarchical structure prepared for a high performance symmetric conducting particle networks in redox-active electrolytes for grid
supercapacitor[J]. RSC Advances, 2016, 6(104): 101988-101994. energy storage[J]. Journal of the Electrochemical Society, 2015,
[30] HATZELL K B, HATZELL M C, COOK K M, et al. Effect of oxidation 162(5): A5007-A5012.
of carbon material on suspension electrodes for flow electrode [49] HATZELL K, ELLER J, MORELLY S, et al. Direct observation of
capacitive deionization[J]. Environmental Science & Technology, active material interactions in flowable electrodes using X-ray
2015, 49(5): 3040-3047. tomography[J]. Faraday Discuss, 2017, 199: 511-524.
[31] SUGIURA M, ESUMI K, MEGURO K, et al. Surface treatment of (下转第 693 页)