Page 48 - 《精细化工》2021年第4期
P. 48

·682·                             精细化工   FINE CHEMICALS                                 第 38 卷

                 2005, 1(3): 269-276.                              meso-carbon microbeads by oxygen plasma[J]. Bulletin of the
            [11]  DUDUTA M, HO B, WOOD V, et al. Semi-solid lithium rechargeable   Chemical Society of Japan, 1985, 58(9): 2638-2640.
                 flow battery[J]. Advanced Energy Materials, 2011, 1: 511-516.   [32]  SINGH P, PAL K. Activated carbon-polyaniline composite active
            [12]  ALOTTO P, GUARNIERI M, MORO F. Redox flow batteries for the   material slurry electrode for high capacitance, improved rheological
                 storage of renewable energy: A review[J]. Renewable and Sustainable   performance electrochemical flow capacitor[J]. Electrochimica Acta,
                 Energy Reviews, 2014, 29: 325-335.                2020, 354: 136719.
            [13]  KAUS M, KOWAL J, SAUER D U. Modelling the effects of charge   [33]  KAN K (阚侃), FU D (付东), WANG J (王珏), et al. Preparation and
                 redistribution during self-discharge of supercapacitors[J]. Electrochimica   capacitive performance of interconnected composite nanowires based
                 Acta, 2010, 55(25): 7516-7523.                    on polyaniline coated carbon nanofiber[J]. Fine Chemicals (精细化
            [14]  MILLER J, RBURKE A. Electrochemical capacitors: Challenges and   工), 2019, 36(10): 2060-2067.
                 opportunities for real-world applications[J]. Electrochemical Society   [34]  LIU H, LIAO L B, LU Y C, et al. High energy density aqueous li-ion
                 Interface, 2008, 17: 53-57.                       flow capacitor[J]. Advanced Energy Materials, 2017, 7: 1601248.
            [15]  DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechargeable   [35]  TOUPIN M, BROUSSE T, BÉLANGER D. Charge storage mechanism
                 flow battery[J]. Advanced Energy Materials, 2011, 1(4): 511-516.   of MnO 2  electrode used in aqueous  electrochemical capacitor[J].
            [16]  WEBER A Z, MENCH M M, MEYERS J P, et al. Redox flow batteries:   Chemistry of Materials, 2004, 16(16): 3184-3190.
                 A review[J]. Journal of Applied Electrochemistry, 2011, 41(10): 1137-   [36]  LIU H, ZHAO K. Asymmetric flow electrochemical capacitor with
                 1164.                                             high energy densities based on birnessite-type manganese oxide
            [17]  HATZELL K, FAN L, BEIDAGHI M, et al. Composite manganese   nanosheets and activated carbon slurries[J]. Journal of Materials
                 oxide percolating networks as a suspension electrode for an asymmetric   Science, 2016, 51(20): 9306-9313.
                 flow capacitor[J]. ACS Applied Materials & Interfaces, 2014, 6(11):   [37]  TOROP J, SUMMER F, ZADIN  V,  et al. Low concentrated
                 8886-8893.                                        carbonaceous suspensions assisted with carboxymethyl  cellulose as
            [18]  BOOTA M, HATZELL K B, ALHABEB M, et al. Graphene-containing   electrode for electrochemical flow capacitor[J]. The European Physical
                 flowable electrodes for capacitive energy storage[J]. Carbon, 2015,   Journal E, 2019, 42(1): 8.
                 92: 142-149.                                  [38]  SENTHILKUMAR S T, SELVAN R K, MELO J S. Redox additive/
            [19]  CAMPOS J W, BEIDAGHI M, HATZELL K B, et al. Investigation   active electrolytes: A novel approach to enhance the performance of
                 of carbon materials for use as a flowable electrode in electrochemical   supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(40):
                 flow capacitors[J]. Electrochimica Acta, 2013, 98: 123-130.   12386-12394.
            [20]  ZHANG C F,  HATZELL K B, BOOTA M,  et al. Highly  porous   [39]  YOON H, KIM H J, YOO J, et al. Pseudocapacitive slurry electrodes
                 carbon spheres for electrochemical capacitors and capacitive flowable   using redox-active quinone for high-performance flow capacitors: An
                 suspension electrodes[J]. Carbon, 2014, 77: 155-164.   atomic-level understanding of pore texture and capacitance
            [21]  BOOTA M, HATZELL  K, BEIDAGHI M,  et al. Activated carbon   enhancement[J]. J Mater Chem A, 2015, 3(46): 23323-23332.
                 spheres as a flowable electrode in electrochemical flow capacitors[J].   [40]  HUNT C, MATTEJAT M, ANDERSON C, et  al. Symmetric
                 Journal of the Electrochemical Society, 2014, 161: A1078-A1083.   phthalocyanine charge carrier for dual redox flow battery/capacitor
            [22]  QU Q T, WANG  B,  YANG  L C,  et al. Study on electrochemical   applications[J]. ACS Applied Energy Materials, 2019, 2(8):  5391-
                 performance of activated carbon in aqueous Li 2SO 4, Na 2SO 4 and   5396.
                 K 2SO 4 electrolytes[J]. Electrochemistry Communications, 2008, 10(10):   [41]  DUAN W T, HUANG J H, KOWALSKI J A, et al. “Wine-dark sea”
                 1652-1655.                                        in an  organic flow battery: Storing negative charge in 2,1,3-
            [23]  BOOTA M,  HATZELL K B, KUMBUR E C, et al. Towards   benzothiadiazole radicals leads to improved cyclability[J]. ACS
                 high-energy-density pseudocapacitive flowable electrodes by the   Energy Letters, 2017, 2(5): 1156-1161.
                 incorporation of hydroquinone[J]. ChemSusChem, 2015, 8(5): 835-   [42]  YANG Z, ZHANG J, KINTNER M M C, et al. Electrochemical energy
                 843.                                              storage for green grid[J]. Chem Rev, 2011, 111(5): 3577-3613.
            [24]  STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse   [43]  HATZELL K B, BOOTA M, GOGOTSI Y. Materials for suspension
                 silica spheres in the  micron size range[J]. Journal of Colloid and   (semi-solid) electrodes for energy and water technologies[J]. Chem
                 Interface Science, 1968, 26(1): 62-69.            Soc Rev, 2015, 44(23): 8664-8687.
            [25]  JEONG H M, LEE J W, SHIN W H, et al. Nitrogen-doped graphene   [44]  SPAHR M E, GOERS D, LEONE A, et al. Development of carbon
                 for high-performance ultracapacitors and the importance of nitrogen-   conductive additives for advanced lithium ion batteries[J]. Journal of
                 doped sites at basal planes[J]. Nano Lett, 2011, 11(6): 2472-2477.   Power Sources, 2011, 196(7): 3404-3413.
            [26]  JIANG B J, TIAN C G, WANG L, et al. Highly concentrated, stable   [45]  YOUSSRY M, MADEC L, SOUDAN P, et al. Non-aqueous carbon
                 nitrogen-doped  graphene for supercapacitors: Simultaneous doping   black suspensions for lithium-based redox flow batteries: Rheology
                 and reduction[J]. Applied Surface Science, 2012, 258(8): 3438-3443.   and simultaneous  rheo-electrical behavior[J]. Physical  Chemistry
            [27]  HOU S J, WANG M, XU X T, et al. Nitrogen-doped carbon spheres:   Chemical Physics, 2013, 15(34): 14476-14486.
                 A new high-energy-density and long-life pseudo-capacitive electrode   [46]  AKUZUM B, HUDSON D, EICHFELD D, et al. Reticulated carbon
                 material for electrochemical flow capacitor[J]. Journal of Colloid and   electrodes for improved charge transport in electrochemical flow
                 Interface Science, 2017, 491: 161-166.            capacitors[J]. Journal of the  Electrochemical Society, 2018, 165:
            [28]  WANG Z, YAN T T, FANG J H, et al. Nitrogen-doped porous carbon   A2519-A2527.
                 derived from a bimetallic metal-organic framework as highly efficient   [47]  QI Z X, KOENIG G M. Review article: Flow battery systems with
                 electrodes for flow-through deionization capacitors[J]. Journal of   solid electroactive  materials[J]. Journal of Vacuum Science &
                 Materials Chemistry A, 2016, 4(28): 10858-10868.   Technology B, 2017, 35: 040801.
            [29]  LEI Z K, LI Y, ZHANG L Q, et al. Nitrogen-doped porous carbon   [48]  HATZELL K  B,  BOOTA M, KUMBUR E C,  et al. Flowable
                 with a hierarchical structure prepared for a high performance symmetric   conducting particle networks in  redox-active electrolytes for grid
                 supercapacitor[J]. RSC Advances, 2016, 6(104): 101988-101994.   energy storage[J]. Journal  of the Electrochemical Society, 2015,
            [30]  HATZELL K B, HATZELL M C, COOK K M, et al. Effect of oxidation   162(5): A5007-A5012.
                 of carbon material on  suspension electrodes for  flow electrode   [49]  HATZELL K, ELLER J, MORELLY S, et al. Direct observation of
                 capacitive deionization[J]. Environmental Science &  Technology,   active  material interactions in flowable electrodes using X-ray
                 2015, 49(5): 3040-3047.                           tomography[J]. Faraday Discuss, 2017, 199: 511-524.
            [31]  SUGIURA M, ESUMI K, MEGURO K, et al. Surface treatment of                   (下转第 693 页)
   43   44   45   46   47   48   49   50   51   52   53