Page 33 - 《精细化工》2021年第5期
P. 33

第 5 期                       王   宁,等:  油溶性聚合物在稠油降黏中的研究进展                                  ·887·


            香度大和连接基长的单体,可以尝试在烷基侧链的                                 recovery[J]. Energy & Fuels, 2018, 32(6): 7002-7010.
                                                               [5]   QUAN H P, XING L M. The effect of hydrogen bonds between flow
            末端连接芳香环;(2)烷基侧链应该与蜡质的平均                                improvers with asphaltene for  heavy crude oil[J]. Fuel, 2019, 237:
            碳原子数相匹配,在此基础上采用异构烷烃或是引                                 276-282.
                                                               [6]   CHÁVEZ-MIYAUCHI  T E,  ZAMUDIO-RIVERA L S, BARBA-
            入不同长度的混合链较好,但综合来看引入混合链                                 LOPEZ V. Aromatic polyisobutylene succinimides as viscosity
                                                                   reducers with asphaltene dispersion capability for  heavy and
            的方式较可行,另外混合链的加入或可提高降黏剂                                 extra-heavy crude oils[J]. Energy & Fuels, 2013, 27(4): 1994-2001.
            的适用范围;(3)极性基团能提高降黏剂分子对沥                            [7]   PI Z Y (皮之洋), JIN L (金蕾), LI D X (李得轩), et al. Research
                                                                   progress of viscosity reduction in heavy oil[J]. Shandong Chemical
            青质和胶质的分散作用,还可以在聚合物分子骨架                                 Industry (山东化工), 2020, 49(8): 96-97, 101.
            上引入带有表面活性的基团或对骨架侧链进行接枝                             [8]   WANG P (王培). Study on viscosity reduction technology of heavy
                                                                   oil with viscosity reducer[J]. Liaoning Chemical Industry (辽宁化
            改性。除此之外,小分子降黏剂也取得了不错的降                                 工), 2018, 47(9): 960-962, 965.
                                                               [9]   LI Q (李崎), WANG X D (王晓冬), LI Q Y (李秋叶), et al. Research
            黏效果,值得开展更深入的研究。                                        progress and development trend for viscosity reduction technology of
                 由于油溶性降黏剂仍处于研究发展阶段,尚存                              heavy crude oil[J]. Chemical Research (化学研究), 2018, 29(5):
                                                                   441-454.
            在一些不足,主要为:(1)降黏机理模糊不清。虽                            [10]  ZHAO W X (赵文学), HAN K J (韩克江), ZENG H (曾鹤), et al.
                                                                   Mechanisms and research progress of heavy oil viscosity reduction
            然有不同的学者针对不同稠油和降黏剂降黏效果尽                                 methods[J]. Contemporary Chemical Industry (当代化工), 2015,
            力解释作用机理,但不同地区的稠油组分差异较大,                                44(6): 1365-1367.
                                                               [11]  YU M (于勐). A brief analysis of heavy oil viscosity reduction
            使用的降黏剂也有很大差异,对降黏机理的解释仍                                 technologies and development direction[J]. Petrochemical Industry
                                                                   Technology (石化技术), 2018, 25(12): 139.
            然不够系统和清晰;(2)适用范围有局限性。大部
                                                               [12]  GUAN R  L (关润伶). Study on structural characteristic of heavy
            分降黏剂只针对某种特定的稠油有较好的降黏效                                  crude oil and preparation of the viscosity reducer[D]. Beijing:
                                                                   Beijing Jiaotong University (北京交通大学), 2007.
            果,同一种降黏剂对不同地区的不同组分含量的稠                             [13]  LIU Q Y (刘清云). Study on the synthesis, performance and
            油降黏效果差异较大,目前尚无统一的规律,也未                                 mechanism of heavy oil  viscosity reduction and  seepage flow
                                                                   improver[D]. Wuhan: China University of Geosciences (中国地质大
            有针对不同稠油进行降黏剂筛选的原则和指导方                                  学), 2018.
                                                               [14]  CUI Q (崔青), ZHANG C  Q (张长桥), XIU J X (修建新),  et al.
            法;(3)降黏效果有限。国内外未见单一使用油溶                                Molecular dynamic simulation  on  the mechanism of viscosity
            性降黏剂的报道,都是与表面活性剂或纳米材料复                                 reduction to asphaltene and resin in heavy oil[J]. Journal of
                                                                   Shandong University (Engineering  Science) (山东大学学报:  工学
            配进行使用;另外,降黏剂载液的选择也对降黏效                                 版), 2017, 47(2): 123-130.
                                                               [15]  AFRA S, NASR-EL-DIN H  A, SOCCI D,  et al. Green phenolic
            果有一定的影响。                                               amphiphile as a viscosity modifier and asphaltenes dispersant for
                 综上,作者建议今后油溶性降黏剂的研究重点                              heavy and extra-heavy oil[J]. Fuel, 2018, 220: 481-489.
                                                               [16]  SM A, YEOW W F, MERLELA M. A review on various techniques
            为:(1)利用分子模拟手段,对稠油进行分子模拟,                               and recent advances in polymeric additives to mitigate wax problems
                                                                   in crude oil[J]. Journal of Advanced Research in Fluid  Mechanics
            有针对性地筛选降黏剂结构单元,并从分子层面解
                                                                   and Thermal Sciences, 2018, 48(1): 53-64.
            释降黏作用机制;(2)利用现代表征技术,如 IR、                          [17]  ZHENG B R (郑斌茹), MAO G L (毛国梁), LIU Z H (刘振华), et
                                                                   al. Research progress in the mechanism and molecular design of pour
                    1
            SEM 及 HNMR 等手段,对聚合物分子结构和加降                             point  depressants[J]. Petrochemical Technology (石油化工), 2017,
            黏剂前后的稠油形貌进行分析,实现聚合物分子的                                 46(6): 801-809.
                                                               [18]  ZHANG X, YANG F, YAO B, et al. Synergistic effect of asphaltenes
            可控合成,更深入研究油溶性降黏剂的降黏过程和                                 and octadecyl acrylate-maleic anhydride copolymers  modified by
                                                                   aromatic pendants on the flow behavior of model waxy oils[J]. Fuel,
            分子间的相互作用;(3)在降黏剂的合成及加入过                                2020, 260: 116381-116388.
            程中,尽量避免选用毒性较大的溶剂或试剂,可以                             [19]  LIU X  B (刘小波). Development of pour point and viscosity
                                                                   reducing agent for high freezing point crude oil in Weibei[J].
            用煤油代替甲苯作为溶剂及载液,体现绿色化学的                                 Petrochemical Industry  Application (石油化工应用), 2020, 39(2):
                                                                   74-80.
            原则;(4)将油溶性降黏剂与表面活性剂、纳米粒                            [20]  YU S (于帅), SUN Y  Y (孙芸芸). Study on molecular design and
            子进行复配或接枝改性,进一步提高降黏率和适用                                 performance of pour depressant based on molecular simulation[J].
                                                                   Chemical Engineering of Oil and Gas (石油与天然气化工), 2018,
            范围。                                                    47(3): 54-58.
                                                               [21]  YANG F (杨飞), ZHANG X P (张晓平), LI C X (李传宪), et al. The
            参考文献:                                                  comb-like polymer pour point depressant containing aromatic groups
                                                                   and asphaltenes synergistically improved the rheological properties
            [1]   YANG Y Q, GUO J X, CHENG Z F, et al. New composite viscosity   of synthetic waxy oils[J]. Chemical Journal of Chinese Universities
                 reducer with both asphaltene dispersion and emulsifying capability   (高等学校化学学报), 2019, 40(12): 2606-2614.
                 for heavy and ultraheavy crude oils[J]. Energy & Fuels, 2017, 31(2):   [22]  CAI X H (蔡新恒), LONG J (龙军), REN Q (任强),  et al.
                 1159-1173.                                        Aggregation mechanism of asphaltene molecular aggregates[J]. Acta
            [2]   GUO K, LI H L, YU Z X. In-situ heavy and extra-heavy oil recovery:   Petrolei Sinica  (Petroleum  Processing Section) (石油学报:  石油加
                 A review[J]. Fuel, 2016, 185: 886-902.            工), 2019, 39(5): 920-928.
            [3]   QUAN H P (全红平), LI P F (李鹏飞), HUANG Z Y (黄志宇), et al.   [23]  WU T (兀涛). Viscosity reduction and efficiency increase technology
                 Synthesis of a small molecular oil-soluble viscosity reducer and   of heavy oil in  petroleum industry[J]. Petrochemical Industry
                 evaluation of its viscosity reduction ability[J]. Modern  Chemical   Technology (石化技术), 2018, 12: 34.
                 Industry (现代化工), 2019, 39(10): 150-155.       [24]  LIU G H,  YANG J  Y, SONG J,  et al.  Inhibition of asphaltene
            [4]   LI J, WANG Q X, LIU Y G, et al. Long branched-chain amphiphilic   precipitation in blended crude oil using novel oil-soluble maleimide
                 copolymers: Synthesis, properties, and application in  heavy oil   polymers[J]. Energy Sources Part A: Recovery Utilization and
   28   29   30   31   32   33   34   35   36   37   38