Page 33 - 《精细化工》2021年第5期
P. 33
第 5 期 王 宁,等: 油溶性聚合物在稠油降黏中的研究进展 ·887·
香度大和连接基长的单体,可以尝试在烷基侧链的 recovery[J]. Energy & Fuels, 2018, 32(6): 7002-7010.
[5] QUAN H P, XING L M. The effect of hydrogen bonds between flow
末端连接芳香环;(2)烷基侧链应该与蜡质的平均 improvers with asphaltene for heavy crude oil[J]. Fuel, 2019, 237:
碳原子数相匹配,在此基础上采用异构烷烃或是引 276-282.
[6] CHÁVEZ-MIYAUCHI T E, ZAMUDIO-RIVERA L S, BARBA-
入不同长度的混合链较好,但综合来看引入混合链 LOPEZ V. Aromatic polyisobutylene succinimides as viscosity
reducers with asphaltene dispersion capability for heavy and
的方式较可行,另外混合链的加入或可提高降黏剂 extra-heavy crude oils[J]. Energy & Fuels, 2013, 27(4): 1994-2001.
的适用范围;(3)极性基团能提高降黏剂分子对沥 [7] PI Z Y (皮之洋), JIN L (金蕾), LI D X (李得轩), et al. Research
progress of viscosity reduction in heavy oil[J]. Shandong Chemical
青质和胶质的分散作用,还可以在聚合物分子骨架 Industry (山东化工), 2020, 49(8): 96-97, 101.
上引入带有表面活性的基团或对骨架侧链进行接枝 [8] WANG P (王培). Study on viscosity reduction technology of heavy
oil with viscosity reducer[J]. Liaoning Chemical Industry (辽宁化
改性。除此之外,小分子降黏剂也取得了不错的降 工), 2018, 47(9): 960-962, 965.
[9] LI Q (李崎), WANG X D (王晓冬), LI Q Y (李秋叶), et al. Research
黏效果,值得开展更深入的研究。 progress and development trend for viscosity reduction technology of
由于油溶性降黏剂仍处于研究发展阶段,尚存 heavy crude oil[J]. Chemical Research (化学研究), 2018, 29(5):
441-454.
在一些不足,主要为:(1)降黏机理模糊不清。虽 [10] ZHAO W X (赵文学), HAN K J (韩克江), ZENG H (曾鹤), et al.
Mechanisms and research progress of heavy oil viscosity reduction
然有不同的学者针对不同稠油和降黏剂降黏效果尽 methods[J]. Contemporary Chemical Industry (当代化工), 2015,
力解释作用机理,但不同地区的稠油组分差异较大, 44(6): 1365-1367.
[11] YU M (于勐). A brief analysis of heavy oil viscosity reduction
使用的降黏剂也有很大差异,对降黏机理的解释仍 technologies and development direction[J]. Petrochemical Industry
Technology (石化技术), 2018, 25(12): 139.
然不够系统和清晰;(2)适用范围有局限性。大部
[12] GUAN R L (关润伶). Study on structural characteristic of heavy
分降黏剂只针对某种特定的稠油有较好的降黏效 crude oil and preparation of the viscosity reducer[D]. Beijing:
Beijing Jiaotong University (北京交通大学), 2007.
果,同一种降黏剂对不同地区的不同组分含量的稠 [13] LIU Q Y (刘清云). Study on the synthesis, performance and
油降黏效果差异较大,目前尚无统一的规律,也未 mechanism of heavy oil viscosity reduction and seepage flow
improver[D]. Wuhan: China University of Geosciences (中国地质大
有针对不同稠油进行降黏剂筛选的原则和指导方 学), 2018.
[14] CUI Q (崔青), ZHANG C Q (张长桥), XIU J X (修建新), et al.
法;(3)降黏效果有限。国内外未见单一使用油溶 Molecular dynamic simulation on the mechanism of viscosity
性降黏剂的报道,都是与表面活性剂或纳米材料复 reduction to asphaltene and resin in heavy oil[J]. Journal of
Shandong University (Engineering Science) (山东大学学报: 工学
配进行使用;另外,降黏剂载液的选择也对降黏效 版), 2017, 47(2): 123-130.
[15] AFRA S, NASR-EL-DIN H A, SOCCI D, et al. Green phenolic
果有一定的影响。 amphiphile as a viscosity modifier and asphaltenes dispersant for
综上,作者建议今后油溶性降黏剂的研究重点 heavy and extra-heavy oil[J]. Fuel, 2018, 220: 481-489.
[16] SM A, YEOW W F, MERLELA M. A review on various techniques
为:(1)利用分子模拟手段,对稠油进行分子模拟, and recent advances in polymeric additives to mitigate wax problems
in crude oil[J]. Journal of Advanced Research in Fluid Mechanics
有针对性地筛选降黏剂结构单元,并从分子层面解
and Thermal Sciences, 2018, 48(1): 53-64.
释降黏作用机制;(2)利用现代表征技术,如 IR、 [17] ZHENG B R (郑斌茹), MAO G L (毛国梁), LIU Z H (刘振华), et
al. Research progress in the mechanism and molecular design of pour
1
SEM 及 HNMR 等手段,对聚合物分子结构和加降 point depressants[J]. Petrochemical Technology (石油化工), 2017,
黏剂前后的稠油形貌进行分析,实现聚合物分子的 46(6): 801-809.
[18] ZHANG X, YANG F, YAO B, et al. Synergistic effect of asphaltenes
可控合成,更深入研究油溶性降黏剂的降黏过程和 and octadecyl acrylate-maleic anhydride copolymers modified by
aromatic pendants on the flow behavior of model waxy oils[J]. Fuel,
分子间的相互作用;(3)在降黏剂的合成及加入过 2020, 260: 116381-116388.
程中,尽量避免选用毒性较大的溶剂或试剂,可以 [19] LIU X B (刘小波). Development of pour point and viscosity
reducing agent for high freezing point crude oil in Weibei[J].
用煤油代替甲苯作为溶剂及载液,体现绿色化学的 Petrochemical Industry Application (石油化工应用), 2020, 39(2):
74-80.
原则;(4)将油溶性降黏剂与表面活性剂、纳米粒 [20] YU S (于帅), SUN Y Y (孙芸芸). Study on molecular design and
子进行复配或接枝改性,进一步提高降黏率和适用 performance of pour depressant based on molecular simulation[J].
Chemical Engineering of Oil and Gas (石油与天然气化工), 2018,
范围。 47(3): 54-58.
[21] YANG F (杨飞), ZHANG X P (张晓平), LI C X (李传宪), et al. The
参考文献: comb-like polymer pour point depressant containing aromatic groups
and asphaltenes synergistically improved the rheological properties
[1] YANG Y Q, GUO J X, CHENG Z F, et al. New composite viscosity of synthetic waxy oils[J]. Chemical Journal of Chinese Universities
reducer with both asphaltene dispersion and emulsifying capability (高等学校化学学报), 2019, 40(12): 2606-2614.
for heavy and ultraheavy crude oils[J]. Energy & Fuels, 2017, 31(2): [22] CAI X H (蔡新恒), LONG J (龙军), REN Q (任强), et al.
1159-1173. Aggregation mechanism of asphaltene molecular aggregates[J]. Acta
[2] GUO K, LI H L, YU Z X. In-situ heavy and extra-heavy oil recovery: Petrolei Sinica (Petroleum Processing Section) (石油学报: 石油加
A review[J]. Fuel, 2016, 185: 886-902. 工), 2019, 39(5): 920-928.
[3] QUAN H P (全红平), LI P F (李鹏飞), HUANG Z Y (黄志宇), et al. [23] WU T (兀涛). Viscosity reduction and efficiency increase technology
Synthesis of a small molecular oil-soluble viscosity reducer and of heavy oil in petroleum industry[J]. Petrochemical Industry
evaluation of its viscosity reduction ability[J]. Modern Chemical Technology (石化技术), 2018, 12: 34.
Industry (现代化工), 2019, 39(10): 150-155. [24] LIU G H, YANG J Y, SONG J, et al. Inhibition of asphaltene
[4] LI J, WANG Q X, LIU Y G, et al. Long branched-chain amphiphilic precipitation in blended crude oil using novel oil-soluble maleimide
copolymers: Synthesis, properties, and application in heavy oil polymers[J]. Energy Sources Part A: Recovery Utilization and