Page 99 - 《精细化工》2021年第5期
P. 99

第 5 期                 李   军,等:  还原氧化石墨烯气凝胶/二十烷相变材料的制备及性能                                 ·953·


                (2)作为骨架的 r-GO 气凝胶,能较好地吸收                           122925.
                                                               [18]  POTTATHARA Y B, TIYYAGURA H R, AHMAD Z, et al. Graphene
            太阳光,经过太阳光模拟测试,复合材料的光热转                                 based aerogels: Fundamentals and applications as supercapacitors[J].
            换效率高达 55%,为有机相变材料在太阳房领域的                               The Journal of Energy Storage, 2020, 30: 101549.
                                                               [19]  LIAO H H, CHEN W  H, LIU Y, et  al. A phase change  material
            应用提供了一定的理论基础。                                          encapsulated in a mechanically strong graphene aerogel with high
                                                                   thermal  conductivity and excellent shape stability[J]. Composites
                (3)r-GO 气凝胶的热导率较低,这是残留的含                           Science and Technology, 2020, 189: 108010.
            氧基团和结构缺陷所导致。因此,需要进一步改善                             [20]  XU Y  X, BAI  H, LU  G W,  et al. Flexible graphene films via  the
                                                                   filtration of water-soluble noncovalent functionalized graphene sheets[J].
            r-GO 气凝胶的热导性,以使其更适合作为 PCM 的                            Journal of the American Chemical Society, 2008, 130(18): 5856-5857.
            支撑材料。                                              [21]  LIU P F, AN F, LU X Y, et al. Highly thermally conductive phase
                                                                   change composites with excellent solar-thermal conversion efficiency
                                                                   and satisfactory shape stability on the basis of high-quality graphene-
            参考文献:                                                  based aerogels[J]. Composites Science and Technology, 2021, 201:
                                                                   108492.
            [1]   SHIVA G, HOSSEIN E, FRANCESCO C, et al. A review on recent
                 advancements in performance enhancement techniques for low-temperature   [22]  ZHANG X Y, ZHU C Q, FANG G Y. Preparation and thermal properties
                 solar collectors[J]. Energy Conversion and Management, 2020, 222:   of n-eicosane/nano-SiO 2/expanded graphite composite phase-change
                 113246.                                           material for thermal energy storage[J]. Materials Chemistry and Physics,
            [2]   WU W H, HUANG X Y, LI K, et al. A functional form-stable phase   2019, 240: 122178.
                 change composite with high efficiency  electro-to-thermal energy   [23]  YANG J, QI G Q, BAO R Y, et al. Hybridizing graphene aerogel into
                                                                   three-dimensional graphene foam for high-performance  composite
                 conversion[J]. Applied Energy, 2017, 190: 474-480.
            [3]   SCHMIT H, RATHGEBER C, HOOCK P, et al. Critical review on   phase change materials[J]. Energy Storage Materials, 2018, 13: 88-95.
                 measured phase transition enthalpies of salt hydrates in the context of   [24]  LIU H, NIU J F,  WANG X  D, et  al. Design and construction of
                 solid-liquid phase change materials[J]. Thermochimica Acta, 2019,   mesoporous silica/n-eicosane phase-change nanocomposites for
                 683: 178477.                                      supercooling depression and heat transfer enhancement[J]. Energy,
                                                                   2019, 118: 116075.
            [4]   MAGENDRAN S S, KHAN F S A, MUJAWAR M N, et al. Synthesis   [25]  LI C C, ZHANG  B, LIU Q X.  n-Eicosane/expanded graphite  as
                 of organic phase change materials (PCM) for energy storage applications:
                 A review[J]. Nano-Structures & Nano-Objects, 2019, 10: 100399.     composite phase change materials for electro-driven thermal energy
            [5]   LI B X, NIE S B, HAO  Y  G,  et al. Stearic-acid/carbon-nanotube   storage[J]. Journal of Energy Storage, 2020, 29: 101339.
                 composites with tailored shape-stabilized phase transitions and light-heat   [26]  CHEN L J, ZOU R Q, XIA W, et al. Electro-and photo driven phase
                 conversion for thermal  energy storage[J]. Energy Conversion &   change composites based on wax-infiltrated carbon nanotube sponges[J].
                 Management, 2015, 98: 314-321.                    ACS Nano, 2012, 6(12): 10884-10892.
            [6]   AFTAB W, MAHMOOD  A, GUO  W H, et al. Polyurethane-based   [27]  BEHZADI S, FARID M M. Long term thermal stability of organic
                 flexible and conductive phase change composites for energy conversion   PCMs[J]. Applied Energy, 2014, 122: 11-16.
                 and storage[J]. Energy Storage Materials, 2019, 20: 401-409.     [28]  ABDI A, IGNATOWICZ M, GUNASEKARA S N, et al. Experimental
            [7]   HU H L. Recent advances of polymeric phase change composites for   investigation of thermo-physical properties of  n-octadecane and
                 flexible electronics and thermal energy storage  system[J]. Composites   n-eicosane[J]. International Journal of Heat and Mass Transfer, 2020,
                 Part B Engineering, 2020, 195: 108094.            161: 120285.
            [8]   CHANDEL S S, AGARWAL T. Review of current state of research   [29]  ZHOU Y, WANG X J, LIU X D, et al. Polyurethane-based solid-solid
                 on energy  storage, toxicity,  health  hazards and commercialization  of   phase change  materials with halloysite nanotubes-hybrid graphene
                 phase changing materials[J]. Renewable & Sustainable Energy Reviews,   aerogels for efficient light- and electro-thermal conversion and
                 2017, 67: 581-596.                                storage[J]. Carbon, 2018, 142: 558-566.
            [9]   LING T C, POON C S. Use of phase change materials for thermal   [30]  YANG J, QI G Q, LIU Y, et al. Hybrid graphene aerogels/phase change
                 energy storage in concrete: An overview[J]. Construction and Building   material composites: Thermal conductivity, shape stabilization and
                 Materials, 2013, 46(8): 55-62.                    light-to-thermal energy storage[J]. Carbon, 2016, 100: 693-702.
            [10]  JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of   [31]  DU X S, XU J N, DENG S, et al. Amino-functionalized single-walled
                 microencapsulation methods of phase change materials (PCMs) as a   carbon nanotubes-integrated polyurethane phase change  composites
                 thermal  energy storage (TES)  medium[J].  Renewable & Sustainable   with superior photothermal  conversion efficiency and thermal
                 Energy Reviews, 2014, 31: 531-542.                conductivity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21):
            [11]  ZHU C Q, LIN Y X, FANG G Y. Preparation and thermal properties   17682-17690.
                 of microencapsulated stearyl alcohol with silicon dioxide shell as thermal   [32]  LU X, HUANG H W, ZHANG X Y,  et al. Novel light-driven and
                 energy storage materials[J]. Applied Thermal Engineering, 2020, 169: 114943.    electro-driven polyethylene glycol/two-dimensional MXene form-stable
            [12]  TANG Y J, LIN Y X, JIA Y T, et al. Improved thermal properties of   phase change material with enhanced thermal conductivity and electrical
                 stearyl alcohol/high density polyethylene/expanded graphite composite   conductivity for thermal energy storage[J]. Composites, 2019, 177(15):
                 phase change materials for building thermal energy storage[J]. Energy   1-10.
                 and Buildings, 2017, 153: 41-49.              [33]  YANG J, TANG  L S, BAO R Y,  et al. Largely enhanced thermal
            [13]  UMAIR M M, ZHANG  Y, IQBAL  K,  et al. Novel strategies and   conductivity of poly (ethylene glycol)/boron nitride composite phase
                 supporting materials applied to shape-stabilize organic phase change   change materials for solar-thermal-electric energy conversion and
                 materials for thermal energy storage—A review[J]. Applied Energy,   storage with very low content of graphene nanoplatelets[J]. Chemical
                 2019, 235: 846-873.                               Engineering Journal, 2017, 315: 481- 490.
            [14]  LI L P, WANG G, GUO C G. Influence of intumescent flame   [34]  CHEN R J, YAO R M, XIA W, et al. Electro/photo to heat conversion
                 retardant on thermal and flame retardancy of eutectic mixed paraffin/   system based on polyurethane embedded graphite foam[J]. Applied
                 polypropylene form-stable phase change materials[J]. Applied Energy,   Energy, 2015, 152(15): 183-188.
                 2016, 162: 428-434.                           [35]  YANG J, JIA Y L, BING N C, et al. Reduced graphene oxide and
            [15]  ZHANG Y, TANG B T, WANG L J, et al. Novel hybrid form-stable   zirconium carbide co-modified melamine sponge/paraffin wax composites
                 polyether phase change materials with good fire resistance[J]. Energy   as new form-stable phase change materials for photothermal energy
                 Storage Materials, 2017, 6: 46-52.                conversion and storage[J]. Applied Thermal Engineering, 2019, 163:
            [16]  MANDL J M, LOHRASBI S, NSOFOR E C. Hybrid heat transfer   114412.
                 enhancement for latent-heat thermal energy storage systems: A review[J].   [36]  ATINAFU D G, WANG C, DONG W J. In-situ derived graphene from
                 International Journal of Heat and Mass Transfer, 2019, 137: 630-649.     solid sodium acetate for enhanced photothermal conversion, thermal
            [17]  MALAKOOTI S, ZHAO E, TSAO  N,  et al. Synthesis of aerogel   conductivity, and energy storage capacity of phase change materials[J].
                 foams through a pressurized sol-gel method[J]. Polymer, 2020, 208:   Solar Energy Materials and Solar Cells, 2020, 205: 110269.
   94   95   96   97   98   99   100   101   102   103   104