Page 99 - 《精细化工》2021年第5期
P. 99
第 5 期 李 军,等: 还原氧化石墨烯气凝胶/二十烷相变材料的制备及性能 ·953·
(2)作为骨架的 r-GO 气凝胶,能较好地吸收 122925.
[18] POTTATHARA Y B, TIYYAGURA H R, AHMAD Z, et al. Graphene
太阳光,经过太阳光模拟测试,复合材料的光热转 based aerogels: Fundamentals and applications as supercapacitors[J].
换效率高达 55%,为有机相变材料在太阳房领域的 The Journal of Energy Storage, 2020, 30: 101549.
[19] LIAO H H, CHEN W H, LIU Y, et al. A phase change material
应用提供了一定的理论基础。 encapsulated in a mechanically strong graphene aerogel with high
thermal conductivity and excellent shape stability[J]. Composites
(3)r-GO 气凝胶的热导率较低,这是残留的含 Science and Technology, 2020, 189: 108010.
氧基团和结构缺陷所导致。因此,需要进一步改善 [20] XU Y X, BAI H, LU G W, et al. Flexible graphene films via the
filtration of water-soluble noncovalent functionalized graphene sheets[J].
r-GO 气凝胶的热导性,以使其更适合作为 PCM 的 Journal of the American Chemical Society, 2008, 130(18): 5856-5857.
支撑材料。 [21] LIU P F, AN F, LU X Y, et al. Highly thermally conductive phase
change composites with excellent solar-thermal conversion efficiency
and satisfactory shape stability on the basis of high-quality graphene-
参考文献: based aerogels[J]. Composites Science and Technology, 2021, 201:
108492.
[1] SHIVA G, HOSSEIN E, FRANCESCO C, et al. A review on recent
advancements in performance enhancement techniques for low-temperature [22] ZHANG X Y, ZHU C Q, FANG G Y. Preparation and thermal properties
solar collectors[J]. Energy Conversion and Management, 2020, 222: of n-eicosane/nano-SiO 2/expanded graphite composite phase-change
113246. material for thermal energy storage[J]. Materials Chemistry and Physics,
[2] WU W H, HUANG X Y, LI K, et al. A functional form-stable phase 2019, 240: 122178.
change composite with high efficiency electro-to-thermal energy [23] YANG J, QI G Q, BAO R Y, et al. Hybridizing graphene aerogel into
three-dimensional graphene foam for high-performance composite
conversion[J]. Applied Energy, 2017, 190: 474-480.
[3] SCHMIT H, RATHGEBER C, HOOCK P, et al. Critical review on phase change materials[J]. Energy Storage Materials, 2018, 13: 88-95.
measured phase transition enthalpies of salt hydrates in the context of [24] LIU H, NIU J F, WANG X D, et al. Design and construction of
solid-liquid phase change materials[J]. Thermochimica Acta, 2019, mesoporous silica/n-eicosane phase-change nanocomposites for
683: 178477. supercooling depression and heat transfer enhancement[J]. Energy,
2019, 118: 116075.
[4] MAGENDRAN S S, KHAN F S A, MUJAWAR M N, et al. Synthesis [25] LI C C, ZHANG B, LIU Q X. n-Eicosane/expanded graphite as
of organic phase change materials (PCM) for energy storage applications:
A review[J]. Nano-Structures & Nano-Objects, 2019, 10: 100399. composite phase change materials for electro-driven thermal energy
[5] LI B X, NIE S B, HAO Y G, et al. Stearic-acid/carbon-nanotube storage[J]. Journal of Energy Storage, 2020, 29: 101339.
composites with tailored shape-stabilized phase transitions and light-heat [26] CHEN L J, ZOU R Q, XIA W, et al. Electro-and photo driven phase
conversion for thermal energy storage[J]. Energy Conversion & change composites based on wax-infiltrated carbon nanotube sponges[J].
Management, 2015, 98: 314-321. ACS Nano, 2012, 6(12): 10884-10892.
[6] AFTAB W, MAHMOOD A, GUO W H, et al. Polyurethane-based [27] BEHZADI S, FARID M M. Long term thermal stability of organic
flexible and conductive phase change composites for energy conversion PCMs[J]. Applied Energy, 2014, 122: 11-16.
and storage[J]. Energy Storage Materials, 2019, 20: 401-409. [28] ABDI A, IGNATOWICZ M, GUNASEKARA S N, et al. Experimental
[7] HU H L. Recent advances of polymeric phase change composites for investigation of thermo-physical properties of n-octadecane and
flexible electronics and thermal energy storage system[J]. Composites n-eicosane[J]. International Journal of Heat and Mass Transfer, 2020,
Part B Engineering, 2020, 195: 108094. 161: 120285.
[8] CHANDEL S S, AGARWAL T. Review of current state of research [29] ZHOU Y, WANG X J, LIU X D, et al. Polyurethane-based solid-solid
on energy storage, toxicity, health hazards and commercialization of phase change materials with halloysite nanotubes-hybrid graphene
phase changing materials[J]. Renewable & Sustainable Energy Reviews, aerogels for efficient light- and electro-thermal conversion and
2017, 67: 581-596. storage[J]. Carbon, 2018, 142: 558-566.
[9] LING T C, POON C S. Use of phase change materials for thermal [30] YANG J, QI G Q, LIU Y, et al. Hybrid graphene aerogels/phase change
energy storage in concrete: An overview[J]. Construction and Building material composites: Thermal conductivity, shape stabilization and
Materials, 2013, 46(8): 55-62. light-to-thermal energy storage[J]. Carbon, 2016, 100: 693-702.
[10] JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of [31] DU X S, XU J N, DENG S, et al. Amino-functionalized single-walled
microencapsulation methods of phase change materials (PCMs) as a carbon nanotubes-integrated polyurethane phase change composites
thermal energy storage (TES) medium[J]. Renewable & Sustainable with superior photothermal conversion efficiency and thermal
Energy Reviews, 2014, 31: 531-542. conductivity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21):
[11] ZHU C Q, LIN Y X, FANG G Y. Preparation and thermal properties 17682-17690.
of microencapsulated stearyl alcohol with silicon dioxide shell as thermal [32] LU X, HUANG H W, ZHANG X Y, et al. Novel light-driven and
energy storage materials[J]. Applied Thermal Engineering, 2020, 169: 114943. electro-driven polyethylene glycol/two-dimensional MXene form-stable
[12] TANG Y J, LIN Y X, JIA Y T, et al. Improved thermal properties of phase change material with enhanced thermal conductivity and electrical
stearyl alcohol/high density polyethylene/expanded graphite composite conductivity for thermal energy storage[J]. Composites, 2019, 177(15):
phase change materials for building thermal energy storage[J]. Energy 1-10.
and Buildings, 2017, 153: 41-49. [33] YANG J, TANG L S, BAO R Y, et al. Largely enhanced thermal
[13] UMAIR M M, ZHANG Y, IQBAL K, et al. Novel strategies and conductivity of poly (ethylene glycol)/boron nitride composite phase
supporting materials applied to shape-stabilize organic phase change change materials for solar-thermal-electric energy conversion and
materials for thermal energy storage—A review[J]. Applied Energy, storage with very low content of graphene nanoplatelets[J]. Chemical
2019, 235: 846-873. Engineering Journal, 2017, 315: 481- 490.
[14] LI L P, WANG G, GUO C G. Influence of intumescent flame [34] CHEN R J, YAO R M, XIA W, et al. Electro/photo to heat conversion
retardant on thermal and flame retardancy of eutectic mixed paraffin/ system based on polyurethane embedded graphite foam[J]. Applied
polypropylene form-stable phase change materials[J]. Applied Energy, Energy, 2015, 152(15): 183-188.
2016, 162: 428-434. [35] YANG J, JIA Y L, BING N C, et al. Reduced graphene oxide and
[15] ZHANG Y, TANG B T, WANG L J, et al. Novel hybrid form-stable zirconium carbide co-modified melamine sponge/paraffin wax composites
polyether phase change materials with good fire resistance[J]. Energy as new form-stable phase change materials for photothermal energy
Storage Materials, 2017, 6: 46-52. conversion and storage[J]. Applied Thermal Engineering, 2019, 163:
[16] MANDL J M, LOHRASBI S, NSOFOR E C. Hybrid heat transfer 114412.
enhancement for latent-heat thermal energy storage systems: A review[J]. [36] ATINAFU D G, WANG C, DONG W J. In-situ derived graphene from
International Journal of Heat and Mass Transfer, 2019, 137: 630-649. solid sodium acetate for enhanced photothermal conversion, thermal
[17] MALAKOOTI S, ZHAO E, TSAO N, et al. Synthesis of aerogel conductivity, and energy storage capacity of phase change materials[J].
foams through a pressurized sol-gel method[J]. Polymer, 2020, 208: Solar Energy Materials and Solar Cells, 2020, 205: 110269.