Page 35 - 《精细化工》2021年第6期
P. 35

第 6 期                   苏   莹,等:  室温下 ZnO 超疏水表面的制备及其油水分离性能                              ·1097·


                 图 9a~d 显示了网面吸收水面油污的过程。不锈                          Journal of Materials Chemistry A, 2014, 2(30): 11628-11634.
            钢网面逐渐被红色正己烷溶液润湿,仅在几秒钟后                             [13] ZHANG X M(张雪梅), WANG H(王航), HAO B B(郝彬彬), et al.
                                                                   Preparation of fly ash superhydrophobic mesh for effectiveoil-water
            就完全吸收了正己烷。这也证明该不锈钢网在溢油                                 separation[J]. Fine Chemicals(精细化工), 2020, 37(6): 1153-1157.
            清理中的应用潜力。                                          [14]  ROHRBACH K,  LI Y Y, ZHU H  L,  et al.  A cellulose  based
                                                                   hydrophilic, oleophobic hydrated  filter for water/oil separation[J].
            3    结论                                                Chemical Communications, 2014, 50(87): 13296-13299.
                                                               [15]  LI J, YAN L, ZHAO Y Z, et al. One-step fabrication of robust fabrics
                                                                   with both-faced superhydrophobicity for the separation and capture
                 室温下,无需有机分子辅助的方法制备了具有                              of oil from water[J]. Physical Chemistry Chemical Physics, 2015, 17:
            纳米片和纳米花的微纳米结构 ZnO,将其沉积在不                               6451-6457.
            锈钢网表面,并修饰硬脂酸,成功构建了超疏水不                             [16]  LIAO Z F(廖正芳), ZHANG W(张伟), MENG X Q(孟小琪), et al.
                                                                   Preparation of sprayable superhydrophobic materials based on tannic
            锈钢网。由于在室温下合成,使用了低成本的不锈                                 acid[J]. Fine Chemicals(精细化工), 2020, 37(5): 893-897.
            钢网和无毒试剂,因此,该法具有成本效益和环境                             [17]  AN Y P, YANG J, YANG H C, et al. Janus membranes with charged
            友好性。该 ZnO 超疏水不锈钢网对水接触角为 161°;                          carbon nanotube coatings for  deemulsification and  separation  of
                                                                   oil-in-water emulsions[J]. ACS Applied Materials Interfaces, 2018,
            在油水分离时呈现出 98.3%的分离效率;网面具备                              10(11): 9832-9840.
            优异的机械耐磨性;20 次循环后分离效率仍高于                            [18]  WANG J T, ZOU Z L, GENG  G H,  et al.  Construction of
            95.5%;在高盐环境中表现出化学稳定性,网面浸泡                              superhydrophobic copper film on stainless steel  mesh by  a simple
                                                                   liquid phase chemical reduction for efficient oil/ water separation[J].
            在 1 mol/L 的 NaCl 溶液中 24 h 后,水接触角仍大于                    Applied Surface Science, 2019, 486: 394-404.
            150°。因此,该超疏水不锈钢网在油水分离领域具                           [19]  WANG J  T,  WANG H F, GENG  G H,  et al.  Highly efficient
                                                                   oil-in-water emulsion and oil layer/water mixture separation based on
            有潜在应用价值。
                                                                   durably superhydrophobic sponge prepared  via a facile route[J].
                                                                   Marine Pollution Bulletin, 2018, 127: 108-116.
            参考文献:
                                                               [20]  XING Y J, XI Z H, XUE Z Q, et al. Optical properties of the ZnO
            [1]   SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and   nanotubes synthesized  via  vapor phase growth[J]. Applied Physics
                 technology for water purification in the coming decades[J]. Nature,   Letters, 2003, 83(9): 1689-1691.
                 2008, 452(7185): 301-310.                     [21]  ZHANG N, YI Y, SHI R R, et al. Novel rose-like ZnO nanoflowers
            [2]   ZHANG Y F, ZHANG L Q, XIAO Z, et al. Fabrication of robust and   synthesized by chemical vapor deposition[J]. Materials Letters, 2009,
                 repairable superhydrophobic coatings  by an immersion  method[J].   63(3): 496-499.
                 Chemical Engineering Journal, 2019, 369: 1-7.     [22]  CHEN P, GU L, XUE X D, et al. Facile synthesis of highly uniform
            [3]   ANJUM  A S, SUN K C, ALI M,  et al.  Fabrication of coral-reef   ZnO  multipods as the supports of Au and Ag nanoparticles[J].
                 structured nano silica for self-cleaning and super-hydrophobic textile   Materials Chemistry and Physics, 2010, 122: 41-48.
                 applications[J]. Chemical Engineering Journal, 2020, 401: 125859.     [23]  LI J, KANG R M, TANG X H, et al. Superhydrophobic meshes that
            [4]   LUO J C, HUO L Y, WANG L, et al. Superhydrophobic and multi-   can repel hot water and strong corrosive liquids used  for efficient
                 responsive fabric  composite with excellent electro-photo-thermal
                                                                   gravity-driven oil/water separation[J]. Nanoscale, 2016, 8(14): 7638-
                 effect and  electromagnetic interference shielding performance[J].
                                                                   7645.
                 Chemical Engineering Journal, 2020, 391: 123537.
                                                               [24]  CAO  C Y,  CHENG J. Fabrication  of superhydrophobic copper
            [5]   LI J, LI D M, YANG Y X, et al. A prewetting induced underwater
                                                                   stearate@Fe 3O 4 coating on stainless steel meshes by dip-coating for
                 superoleophobic or underoil (super) hydrophobic waste potato
                                                                   oil/water separation[J]. Surface & Coatings Technology, 2018, 349:
                 residue-coated mesh for selective efficient oil/water separation[J].
                                                                   296-302.
                 Green Chemistry, 2016, 18: 541-549.
                                                               [25]  ZHANG  C J, LIANG F H, ZHANG W,  et al.  Constructing
            [6]   CHU Z L, FENG Y J, SEEGER S F, et al. Oil/water separation with
                                                                   mechanochemical durable and self-healing superhydrophobic
                 selective  superantiwetting/superwetting   surface  materials[J].
                                                                   surfaces[J]. ACS Omega, 2020, 5: 986-994.
                 Angewandte Chemie, 2015, 54(8): 2328-2338.
                                                               [26]  XIONG J W, SARKAR D K, CHEN X G, et al. Ultraviolet-durable
            [7]   FENG L, LI S H, LI Y S, et al. Super-hydrophobic surfaces: From
                                                                   superhydrophobic nanocomposite thin films based on cobalt stearate-
                 natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
                                                                   coated TiO 2 nanoparticles combined with polymethylhydrosiloxane[J].
            [8]   FENG L, ZHANG Z Y, MAI Z H, et al. A super-hydrophobic and
                                                                   ACS Omega, 2017, 2: 8198-8204.
                 super-oleophilic coating mesh film for the separation  of  oil and
                                                               [27]  RAMAN A, GAWALT E S. Self-assembled monolayers of alkanoic
                 water[J]. Angewandte Chemie, 2004, 43(15): 2012-2014.
                                                                   acids on the native oxide surface of SS316L by solution deposition[J].
            [9]   LI J, LI  D M,  HU W F,  et al.  Stable superhydrophobic and
                                                                   Langmuir, 2007, 23: 2284-2288.
                 superoleophilic silica coated polyurethane sponges for the continuous
                 capture and removal of oils from water surface[J].  New Journal of   [28]  RAMAN  A, QUINONES R, BARRIGER L,  et al.  Understanding
                 Chemistry, 2015, 39: 9958-9962.                   organic film behavior on alloy and metal oxides[J]. Langmuir, 2010,
            [10]  LI J, LI D M, LI W J, et al. Facile fabrication of three-dimensional   26(3): 1747-1754.
                 superhydrophobic foam for effective  separation of oil and water   [29]  SUN H Y, XU Z,  GAO  C,  et al.  Multifunctional, ultra-flyweight,
                 mixture[J]. Materials Letters, 2016, 171: 228-231.     synergistically assembled carbon aerogels[J]. Advanced Materials,
            [11]  LEE  B, LEE S, LEE M,  et al.  Carbon nanotube-bonded graphene   2013, 25(18): 2554-2560.
                 hybrid aerogels and an application to water purification[J]. Nanoscale,   [30]  WANG  C F, LIN S J. Robust  superhydrophobic/superoleophilic
                 2015, 7(15): 6782-6789.                           sponge for effective continuous absorption and expulsion of oil
            [12]  LU Y, SATHASIVAM S, SONG J L, et al. Creating superhydrophobic   pollutants from water[J]. ACS Applied Materials & Interfaces, 2013,
                 mild steel surfaces for water proofing and oil-water separation[J].   5(18): 8861-8864.
   30   31   32   33   34   35   36   37   38   39   40