Page 35 - 《精细化工》2021年第6期
P. 35
第 6 期 苏 莹,等: 室温下 ZnO 超疏水表面的制备及其油水分离性能 ·1097·
图 9a~d 显示了网面吸收水面油污的过程。不锈 Journal of Materials Chemistry A, 2014, 2(30): 11628-11634.
钢网面逐渐被红色正己烷溶液润湿,仅在几秒钟后 [13] ZHANG X M(张雪梅), WANG H(王航), HAO B B(郝彬彬), et al.
Preparation of fly ash superhydrophobic mesh for effectiveoil-water
就完全吸收了正己烷。这也证明该不锈钢网在溢油 separation[J]. Fine Chemicals(精细化工), 2020, 37(6): 1153-1157.
清理中的应用潜力。 [14] ROHRBACH K, LI Y Y, ZHU H L, et al. A cellulose based
hydrophilic, oleophobic hydrated filter for water/oil separation[J].
3 结论 Chemical Communications, 2014, 50(87): 13296-13299.
[15] LI J, YAN L, ZHAO Y Z, et al. One-step fabrication of robust fabrics
with both-faced superhydrophobicity for the separation and capture
室温下,无需有机分子辅助的方法制备了具有 of oil from water[J]. Physical Chemistry Chemical Physics, 2015, 17:
纳米片和纳米花的微纳米结构 ZnO,将其沉积在不 6451-6457.
锈钢网表面,并修饰硬脂酸,成功构建了超疏水不 [16] LIAO Z F(廖正芳), ZHANG W(张伟), MENG X Q(孟小琪), et al.
Preparation of sprayable superhydrophobic materials based on tannic
锈钢网。由于在室温下合成,使用了低成本的不锈 acid[J]. Fine Chemicals(精细化工), 2020, 37(5): 893-897.
钢网和无毒试剂,因此,该法具有成本效益和环境 [17] AN Y P, YANG J, YANG H C, et al. Janus membranes with charged
友好性。该 ZnO 超疏水不锈钢网对水接触角为 161°; carbon nanotube coatings for deemulsification and separation of
oil-in-water emulsions[J]. ACS Applied Materials Interfaces, 2018,
在油水分离时呈现出 98.3%的分离效率;网面具备 10(11): 9832-9840.
优异的机械耐磨性;20 次循环后分离效率仍高于 [18] WANG J T, ZOU Z L, GENG G H, et al. Construction of
95.5%;在高盐环境中表现出化学稳定性,网面浸泡 superhydrophobic copper film on stainless steel mesh by a simple
liquid phase chemical reduction for efficient oil/ water separation[J].
在 1 mol/L 的 NaCl 溶液中 24 h 后,水接触角仍大于 Applied Surface Science, 2019, 486: 394-404.
150°。因此,该超疏水不锈钢网在油水分离领域具 [19] WANG J T, WANG H F, GENG G H, et al. Highly efficient
oil-in-water emulsion and oil layer/water mixture separation based on
有潜在应用价值。
durably superhydrophobic sponge prepared via a facile route[J].
Marine Pollution Bulletin, 2018, 127: 108-116.
参考文献:
[20] XING Y J, XI Z H, XUE Z Q, et al. Optical properties of the ZnO
[1] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and nanotubes synthesized via vapor phase growth[J]. Applied Physics
technology for water purification in the coming decades[J]. Nature, Letters, 2003, 83(9): 1689-1691.
2008, 452(7185): 301-310. [21] ZHANG N, YI Y, SHI R R, et al. Novel rose-like ZnO nanoflowers
[2] ZHANG Y F, ZHANG L Q, XIAO Z, et al. Fabrication of robust and synthesized by chemical vapor deposition[J]. Materials Letters, 2009,
repairable superhydrophobic coatings by an immersion method[J]. 63(3): 496-499.
Chemical Engineering Journal, 2019, 369: 1-7. [22] CHEN P, GU L, XUE X D, et al. Facile synthesis of highly uniform
[3] ANJUM A S, SUN K C, ALI M, et al. Fabrication of coral-reef ZnO multipods as the supports of Au and Ag nanoparticles[J].
structured nano silica for self-cleaning and super-hydrophobic textile Materials Chemistry and Physics, 2010, 122: 41-48.
applications[J]. Chemical Engineering Journal, 2020, 401: 125859. [23] LI J, KANG R M, TANG X H, et al. Superhydrophobic meshes that
[4] LUO J C, HUO L Y, WANG L, et al. Superhydrophobic and multi- can repel hot water and strong corrosive liquids used for efficient
responsive fabric composite with excellent electro-photo-thermal
gravity-driven oil/water separation[J]. Nanoscale, 2016, 8(14): 7638-
effect and electromagnetic interference shielding performance[J].
7645.
Chemical Engineering Journal, 2020, 391: 123537.
[24] CAO C Y, CHENG J. Fabrication of superhydrophobic copper
[5] LI J, LI D M, YANG Y X, et al. A prewetting induced underwater
stearate@Fe 3O 4 coating on stainless steel meshes by dip-coating for
superoleophobic or underoil (super) hydrophobic waste potato
oil/water separation[J]. Surface & Coatings Technology, 2018, 349:
residue-coated mesh for selective efficient oil/water separation[J].
296-302.
Green Chemistry, 2016, 18: 541-549.
[25] ZHANG C J, LIANG F H, ZHANG W, et al. Constructing
[6] CHU Z L, FENG Y J, SEEGER S F, et al. Oil/water separation with
mechanochemical durable and self-healing superhydrophobic
selective superantiwetting/superwetting surface materials[J].
surfaces[J]. ACS Omega, 2020, 5: 986-994.
Angewandte Chemie, 2015, 54(8): 2328-2338.
[26] XIONG J W, SARKAR D K, CHEN X G, et al. Ultraviolet-durable
[7] FENG L, LI S H, LI Y S, et al. Super-hydrophobic surfaces: From
superhydrophobic nanocomposite thin films based on cobalt stearate-
natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
coated TiO 2 nanoparticles combined with polymethylhydrosiloxane[J].
[8] FENG L, ZHANG Z Y, MAI Z H, et al. A super-hydrophobic and
ACS Omega, 2017, 2: 8198-8204.
super-oleophilic coating mesh film for the separation of oil and
[27] RAMAN A, GAWALT E S. Self-assembled monolayers of alkanoic
water[J]. Angewandte Chemie, 2004, 43(15): 2012-2014.
acids on the native oxide surface of SS316L by solution deposition[J].
[9] LI J, LI D M, HU W F, et al. Stable superhydrophobic and
Langmuir, 2007, 23: 2284-2288.
superoleophilic silica coated polyurethane sponges for the continuous
capture and removal of oils from water surface[J]. New Journal of [28] RAMAN A, QUINONES R, BARRIGER L, et al. Understanding
Chemistry, 2015, 39: 9958-9962. organic film behavior on alloy and metal oxides[J]. Langmuir, 2010,
[10] LI J, LI D M, LI W J, et al. Facile fabrication of three-dimensional 26(3): 1747-1754.
superhydrophobic foam for effective separation of oil and water [29] SUN H Y, XU Z, GAO C, et al. Multifunctional, ultra-flyweight,
mixture[J]. Materials Letters, 2016, 171: 228-231. synergistically assembled carbon aerogels[J]. Advanced Materials,
[11] LEE B, LEE S, LEE M, et al. Carbon nanotube-bonded graphene 2013, 25(18): 2554-2560.
hybrid aerogels and an application to water purification[J]. Nanoscale, [30] WANG C F, LIN S J. Robust superhydrophobic/superoleophilic
2015, 7(15): 6782-6789. sponge for effective continuous absorption and expulsion of oil
[12] LU Y, SATHASIVAM S, SONG J L, et al. Creating superhydrophobic pollutants from water[J]. ACS Applied Materials & Interfaces, 2013,
mild steel surfaces for water proofing and oil-water separation[J]. 5(18): 8861-8864.