Page 191 - 《精细化工》2021年第8期
P. 191

第 8 期                  曾敏静,等:  碱度及外投碳源浓度对好氧颗粒污泥脱氮效果影响                                   ·1685·


            时,硝化反应过程中出水 pH 逐渐降至 6.5 以下,当                           Influence of pH and DO on high ammonia nitrogen  wastewater
            进水碱度大于 9.5 mol/L 时,pH 变化不明显,进水                         removal by anaerobic granular sludge[J]. Environmental Science and
                                                                   Managemen (环境科学与管理), 2012, 37(4): 27-29.
            碱度为 9.5 mmol/L 时,氨氮去除率达到最大值                        [12]  GAO S X, HE Q L, WANG H Y. Research on the aerobic granular
            (80.9%),更高的进水碱度并不会取得更大的氨氮                              sludge under alkalinity in sequencing batch reactors: Removal efficiency,
                                                                   metagenomic  and key  microbes[J]. Bioresource Technology, 2020,
            去除率,当进水碱度大于 9.5 mmol/L 后硝化反应                           296: 122280.
            持续时间几乎不变;(3)外投碳源会导致 pH 升高                          [13]  WEI J M (韦佳敏), HUANG H M (黄慧敏), CHENG C (程诚), et al.
            但有利于 TIN 的去除,当投加碳源质量浓度大于                               Effect of sludge retention time and pH on the denitrifying phosphorus
                                                                   removal process[J]. Environmental Science (环境科学), 2019, 40(4):
            280 mg/L 时,出水 TIN 质量浓度维持在 28.4 mg/L                    1900-1905.
            左右,TIN 去除率不再增大并会造成药剂浪费;(4)                         [14] FANG Q(方茜), ZHANG C S (张朝升), ZHANG K F (张可方), et al.
                                                                   Effect of sludge age and pH value on simultaneous nitrification and
            AGS 通过同步硝化反硝化脱氮需要足够的碱度,随
                                                                   denitrification (SND)[J]. Journal of Guangzhou University (Natural
            着碱度的增大,AGS 的同步硝化反硝化能力不断增                               Science Edition) (广州大学学报:  自然科学版), 2008, 7(3): 50-54.
            强,但其内源硝化反硝化脱氮能力有限,外源硝化                             [15]  WANG X P (王歆鹏), CHEN J (陈坚), HUA Z Z (华兆哲), et al. The
                                                                   optimum growth and nitrification condition of nitrifying bacteria[J].
            反硝化可明显增强 AGS 的脱氮能力,实际运行过程                              Chinese Journal of Applied and Environmental Biology (应用与环境
            中需要根据拟达到的出水水质确定最佳碱度及碳源                                 生物学报), 1999, 5(1): 65-69.
            投加浓度。                                              [16] ZHANG Z (张志), REN H Q (任洪强), ZHANG R R (张蓉蓉), et al.
                                                                   Influence of pH value on simultaneous nitrification and denitrification
                                                                   process of aerobic granule sludge[J].  China Environmental Science
            参考文献:
                                                                   (中国环境科学), 2005,(6): 650-654.
            [1]   LIU Y,  TAY J  H.  State of the art of biogranulation technology for   [17]  YANG S F,  LI X  Y, YU H Q. Formation and characterisation of
                 wastewater treatment[J]. Bioresource Technology, 2004, 22(7): 533-   fungal and bacterial granules under different feeding alkalinity and
                 563.                                              pH conditions[J]. Process Biochemistry, 2007, 43(1): 8-14.
            [2]   WANG W H (王维红), BAO W T (包文婷), WANG Y S (王燕杉).   [18]  WU D S (吴代顺), GUI L J (桂丽娟), HOU H X (侯红勋), et al.
                 Effect of particle size on the performance of aerobic granular sludge   Effect of COD, MLSS, pH and sludge acclimation on nitrogen and
                 in tomato sauce  wastewater[J].  Fine Chemicals  (精细化工), 2021,   phosphorus removal[J]. China Water & Wastewater (中国给水排水),
                 38(2): 380-386.                                   2012, 28(13): 117-120.
            [3]   WANG Y X (王月香), CHEN M L (陈茂林). Influences of sludge   [19]  ZHENG L (郑蕾), TIAN Y (田禹), SUN D Z (孙德智). Effects of pH
                 solution on the transformation of Cr  and Cd[J]. Industrial Safety   on the surface  characteristics  and  molecular structure of extracellular
                 and Environmental Protection (工业安全与环保), 2012, 38(12):   polymeric substances from  activated sludge[J]. Environmental
                 66-68.                                            Science (环境科学), 2007, 28(7): 1507-1511.
            [4]   JIN H (金宏), WU  X Q  (邬学清),  LI Q (李强). Characteristics  of   [20]  ZHANG L N (张立楠), XUAN X P (宣鑫鹏), CHENG Y Y (程媛
                 nitrogen and phosphorus removal by aerobic granular sludge under   媛),  et al. Effect of pH on stability of aerobic granular  sludge[J].
                 heavy metal cd stress[J]. Technology of Water Treatment (水处理技  Nonferrous Metals Science and Engineering (有色金属科学与工程),
                 术), 2020, 46(6): 65-68.                           2019, 10(1): 87-91.
            [5]   ZHANG B C, LONG B, CHENG Y Y, et al. Rapid domestication of   [21]  LI D (李冬), SU Q L (苏庆岭), LIANG Y H (梁瑜海), et al. Effect
                 autotrophic nitrifying granular sludge and its stability during long-   of alkalinity and pH value on performance of completely autotrophic
                 term operation[J]. Environmental Technology, 2019: 1-12.   nitrogen removal over nitrogen removal over nitrite process[J]. China
            [6]   ZHANG L N (张立楠), ZENG M J (曾敏静), HUANG S N (黄思   Water & Wastewater (中国给水排水), 2015, 31(3): 13-18.
                 浓), et  al.  Heterotrophic denitrifying performance of  autotrophic   [22]  ZHANG X J (张肖静), LI D (李冬), ZHOU  L J (周利军),  et al.
                 nitrifying granular sludge[J]. Journal of Jiangxi University of Science   Effect of alkalinity on partial nitrification of domestic  sewage  at
                 and Technology (江西理工大学学报), 2020, 41(5): 11-18.    ordinary and low temperatures[J]. Journal of Harbin Institute of
            [7]   LONG B (龙焙), PU W H (濮文虹), YANG  C Z (杨昌柱),  et al.   Technology (哈尔滨工业大学学报), 2013, 45(4): 38-43.
                 Characteristics of aerobic granular sludge in SBRs with different   [23]  WANG S (王伸), DENG L W (邓良伟), XU Z (徐则), et al. pH effect
                 biological selectors[J]. China Water & Wastewater (中国给水排水),   on the performance of aerobic treatment and sludge characteristics[J].
                 2015, 31(5): 16-21.                               China Biogas (中国沼气), 2016, 34(5): 22-26.
            [8]   LIANG D B (梁东博), BIAN W (卞伟), KAN R Z (阚睿哲), et al.   [24]  ZHANG  Z J (张自杰). Drainage engineering[M]. Beijing: China
                 Achieving  partial nitritation in a continuous-flow aerobic granular   Building Industry Press (中国建筑工业出版社), 2015.
                 sludge reactor at  different temperatures through ratio  control[J].   [25]  ZHENG C H (郑春华), GENG A F (耿安锋), LI J G (李金国). Role
                 Environmental Science (环境科学), 2018, 39(4): 1713-1719.   and control alkalinity in the process for biological nitrogen removal[J].
            [9]   FU J X (傅金祥), WANG H B (王海彪), TANG Y L (唐玉兰), et al.   China Water & Wastewater (中国给水排水), 2017, 33(10): 34-36.
                 Short-cut nitrification characteristic of aerobic short-cut nitrification   [26]  ZHANG N (张念), LIU Z W (刘祖文), GUO  Y (郭云), et al.
                 granular sludge under high dissolved oxygen condition[J]. Industrial   Influential factors and related countermeasures of the determination
                 Water & Wastewater (工业用水与废水), 2009, 40(5): 28-31.   of TN in mine leaching wastewater[J]. Industrial Water  Treatment
            [10]  TANG C C (唐朝春), JIAN M P (简美鹏), LIU M (刘名), et al.   (工业水处理), 2016, 36(5): 102-105.
                 Research advances in aerobic granule stability enhancement[J].   [27]  ZHAN H F (詹鸿峰), WANG H S (王华生), PAN Y (潘禹), et al.
                 Chemical Industry and Engineering  Progress (化工进展), 2013,   Measurement and analysis of ion-type rare earth mine wastewater[J].
                 32(4): 919-924.                                   Journal of the Chinese Society of Rare Earths (中国稀土学报), 2020,
            [11]  HUANG G L (黄国玲), XIE Q L (解庆林), AI S J (艾石基), et al.     38(4): 550-556.
   186   187   188   189   190   191   192   193   194   195   196