Page 45 - 《精细化工》2021年第8期
P. 45

第 8 期                       吴延鹏,等:  静电纺丝纳米纤维膜空气过滤研究进展                                   ·1539·


            至关重要的作用,良好的力学性能是其长时间使用                                 Journal of Membrane Science, 2014, 460: 241-249.
            而不破损的重要保证。因此,提高静电纺丝纳米纤                             [16]  PATANAIK A, JACOBS V, ANANDJIWALA R D. Performance
                                                                   evaluation  of electrospun nanofibrous membrane[J]. Journal of
            维膜的力学性能也是目前的研究重点。                                      Membrane Science, 2010, 352(1/2): 136-142.
                (5)溶液静电纺丝用到的有机溶液大多是易挥                          [17]  YUN K M, HOGAN C J, MATSUBAYASHI Y, et al. Nanoparticle
            发、有毒且难以回收的物质,很大程度上限制了静                                 filtration by electrospun  polymer fibers[J]. Chemical Engineering
                                                                   Science, 2007, 62(17): 4751-4759.
            电纺丝纳米纤维膜的工业化。熔体静电纺丝不使用
                                                               [18]  FORMHALS A.  Process and apparatus for preparing artificial
            有机溶剂、原料转化率高,但是仍处于初级阶段,                                 threads: US1975504A [P]. 1934-10-02.
            装置还不够成熟,存在纤维直径较粗、成本较高等                             [19]  DING B, WANG M R, WANG X F, et al. Electrospun nanomaterials
            缺点,尚未形成一定的理论体系,仍需要进一步深                                 for ultrasensitive sensors[J]. Materials Today, 2010, 13(11): 16-27.
                                                               [20]  DAVIES C N. The separation of airborne dust and particles[J]. Proc
            入研究。                                                   Inst Mech Engrs, 1952, 1(5): 393-427.
                                                               [21]  QIN X H, WANG S  Y. Filtration properties  of electrospinning
            参考文献:
                                                                   nanofibers[J]. Journal of Applies Polymer Science, 2006, 102(2):
            [1]   OBERDORSTER G, UTELL M J. Ultrafine particles in the urban air:   1285-1290.
                 To the respiratory tract-and beyond?[J]. Environmental Health   [22]  LI P, WANG C  Y, ZHANG Y  Y,  et al. Air filtration in the free
                 Perspectives, 2002, 110(8): A440-A441.            molecular flow regime: A Review of high-efficiency particulate air
            [2]   LIU C, HSU P C, LEE H W,  et al. Transparent air  filter  for   filters  based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-
                 high-efficiency PM 2.5 capture[J]. Nature Communications, 2015, 6:   4561.
                 6205.                                         [23]  KUWABARA S.  The forces experienced by randomly  distributed
            [3]   SOSNOWSKI T R. Inhaled aerosols: Their role in  COVID-19   parallel circular cylinders  or  spheres  in a viscous flow at small
                 transmission including biophysical interactions in the lungs[J].   reynolds numbers[J]. Journal of the Physical Society of Japan, 2007,
                 Current Opinion in Colloid and Interface Science, 2021, 54: 101451.     14(4): 527.
            [4]   HUNG C H, LEUNG W F. Filtration of nano-aerosol using nanofiber   [24]  YUN K M, SURYAMAS A  B, ISKANDAR F,  et al. Morphology
                 filter under low peclet number and transitional flow regime[J].   optimization of polymer nanofiber for applications in aerosol particle
                 Separation and Purification Technology, 2011, 79(1): 34-42.     filtration[J]. Separation and Purification Technology, 2010, 75(3):
            [5]   KAUR S, SUNDARRAJAN S, RANA  D,  et al. Influence of   340-345.
                 electrospun fiber size on the separation efficiency of thin film   [25]  MIKHEEV A Y, KANEV I L, MOROZOVA T Y, et al. Water-soluble
                 nanofiltration composite membrane[J]. Journal of  Membrane   filters from ultra-thin polyvinylpirrolidone nanofibers[J]. Journal of
                 Science, 2012, 392: 101-111.                      Membrane Science, 2013, 448: 151-159.
            [6]   BARHATE R S, RAMAKRISHNA S. Nanofibrous filtering media:   [26]  CHEN F (陈锋), JI Z L (姬忠礼), QI Q Q (齐强强). Preparation and
                 Filtration problems and solutions from tiny  materials[J]. Journal of   gas-liquid filtration performance of composite filters of electrospun
                 Membrane Science, 2007, 296(1/2): 1-8.            polyacrylonitrile nanofibers[J]. Journal of Textile Research (纺织学
            [7]   DESAI K , KIT K , LI J J, et al. Nanofibrous chitosan non-wovens   报), 2017, 38(9): 8-13.
                 for filtration applications[J]. Polymer, 2009, 50(15): 3661-3669.     [27]  ALENA O S, JAROSLAVA F,  MARTIN N. Recycling of
            [8]   ELLISON C J, PHATAK A, GILES D W,  et al. Melt blown   poly(ethylene terephthalate) by electrospinning to enhanced the
                 nanofibers: Fiber diameter distributions and onset of fiber breakup[J].   filtration efficiency[J]. Materials Letters, 2020, 278: 128426.
                 Polymer, 2007, 48(11): 3306-3316.             [28]  NICOSIA A, KEPPLER T, MÜLLER F A, et al. Cellulose acetate
            [9]   BADROSSAMAY M  R, MCILWEE H A, GOSS J A,  et al.   nanofiber electrospun on nylon substrate as novel composite matrix
                 Nanofiber assembly by rotary jet-spinning[J]. Nano Letters, 2010,   for efficient, heat-resistant, air filters[J]. Chemical  Engineering
                 10(6): 2257-2261.                                 Science, 2016, 153: 284-294.
            [10]  HUANG J X, KANER R B. Nanofiber formation  in  the chemical   [29]  WANG N , RAZA A , SI Y , et al. Tortuously structured polyvinyl
                 polymerization of aniline: A  mechanistic study[J]. Angewandte   chloride/polyurethane fibrous membranes for high-efficiency fine
                 Chemie, 2010, 116(43): 5941-5945.                 particulate filtration[J]. J Colloid Interface, 2013, 398(19): 240-246.
            [11]  HUANG J X, VIRJI S, WEILLER B H, et al. Polyaniline nanofibers:   [30]  CHEN C (陈程),  CHEN Y (陈昀),  CAO J H (曹建华),  et al.
                 Facile synthesis and chemical sensors[J]. Journal of the American   Preparation and  property of electrospun cellulose fiber membrane/
                 Chemical Society, 2003, 125(2): 314-315.          PET composite filter material[J]. New Chemical Materials (化工新
            [12]  HALEEMA S, TRABZON L,  KILIC A,  et al. Recent advances in   型材料), 2016, 44(10): 100-102.
                 nanofibrous membranes: Production and applications in water   [31]  YANG Y Q (杨雨琼), GAO H C (高涵超), CHEN W (陈薇), et al.
                 treatment and desalination[J]. Desalination, 2020, 478: 114178.     Preparation of gradient composite nanofiber membranes of
            [13]  ZHANG S, SHIM W S, KIM J. Design of ultra-fine nonwovens via   PAN/TiO 2 under lower-resistance by  electrospinning[J]. Journal of
                 electrospinning of Nylon 6: Spinning  parameters and filtration   Donghua University (Natural Science) (东华大学学报:  自然科学
                 efficiency[J]. Materials and Design, 2009, 30(9): 3659-3666.     版), 2018, 44(6): 851-858, 867.
            [14]  GOPAL R, KAUR S, MA Z W,  et al. Electrospun nanofibrous   [32]  LI L (李丽), WANG J N (王娇娜), LI C J (李从举). Preparation of
                 filtration membrane[J]. Journal of Membrane Science, 2006,   electrospun  PA6/PET composite membranes and their air filtration
                 281(1/2): 581-586.                                properties[J]. Environmental Chemistry (环境化学), 2012, 31(10):
            [15]  HUANG L W, ARENA J T, MANICKAM S S,  et al. Improved   1575-1579.
                 mechanical properties and hydrophilicity of electrospun  nanofiber   [33]  HOSSEINI S A,  TAFRESHI H  V.  On the importance of fibers'
                 membranes for filtration applications  by dopamine  modification[J].   cross-sectional shape for air filters operating in the slip flow
   40   41   42   43   44   45   46   47   48   49   50