Page 181 - 《精细化工》2021年第9期
P. 181
第 9 期 鲁猷栾,等: 柚皮热解炭应用于对/邻苯二酚电化学传感器 ·1895·
1281. [21] GAO G L, CHEONG L Z, WANG D Y, et al. Pyrolytic carbon derived
[15] NAGARAJAN S, SUBRAMANI K, KARNAN M, et al. Biomass- from spent coffee grounds as anode for sodium-ion batteries[J]. Carbon
derived activated porous carbon from rice straw for high energy Resources Conversion, 2018, 1(1): 104-108.
symmetric supercapacitor in aqueous and non-aqueous electrolytes[J]. [22] FAN L M, LI X Y, KAN X W. Disposable graphite paper based
Energy & Fuels, 2017, 31(1): 977-985. sensor for sensitive simultaneous determination of hydroquinone and
[16] ZHAO W G, LUO L, WU X, et al. Facile and low-cost heteroatom- catechol[J]. Electrochimica Acta, 2016, 213: 504-511.
doped activated biocarbons derived from fir bark for electrochemical [23] HONG Z Q, ZHOU L H, LI J X, et al. A sensor based on graphitic
capacitors[J]. Wood Science and Technology, 2019, 53(1): 227-248. mesoporous carbon/ionic liquids composite film for simultaneous
[17] YU X L, ZHANG K Y, TIAN N, et al. Biomass carbon derived from determination of hydroquinone and catechol[J]. Electrochimica Acta,
sisal fiber as anode material for lithium-ion batteries[J]. Materials 2013, 109: 671-677.
Letters, 2015, 142: 193-196. [24] TASHKHOURIAN J, DANESHI M, NAMI-ANA F, et al. Simultaneous
[18] LI J, LIU W L, XIAO D, et al. Oxygen-rich hierarchical porous determination of hydroquinone and catechol at gold nanoparticles
carbon made from pomelo peel fiber as electrode material for mesoporous silica modified carbon paste electrode[J]. Journal of
supercapacitor[J]. Applied Surface Science, 2017, 416: 918-924. Hazardous Materials, 2016, 318: 117-124.
[19] WU Z C, TIAN K, HUANG T, et al. Hierarchically porous carbons [25] ALSHAHRANI L A, LI X, LUO H, et al. The simultaneous
derived from biomasses with excellent microwave absorption electrochemical detection of catechol and hydroquinone with
performance[J]. ACS Applied Materials & Interfaces, 2018, 10(13): [Cu(Sal-beta-Ala)(3,5-DMPz) 2]/SWCNTs/GCE[J]. Sensors, 2014,
11108-11115. 14(12): 22274-22284.
[20] WANG C H, WEN W C, HSU H C, et al. High-capacitance KOH- [26] ZHANG M, GAN F, CHENG F L. Preparation of flower-like Pd-
activated nitrogen-containing porous carbon material from waste coffee graphene composites for simultaneous determination of catechol and
grounds in supercapacitor[J]. Advanced Powder Technology, 2016, hydroquinone[J]. Research on Chemical Intermediates, 2015, 42(2):
27(4): 1387-1395. 813-826.
(上接第 1880 页) Chemistry, 2007, 50(20): 5003-5011.
[18] THOMAS D D, RIDNOUR L A, ISENBERG J S, et al. The [31] CERECETTO H, PORCAL W. Pharmacological properties of
chemical biology of nitric oxide: Implications in cellular signaling[J]. furoxans and benzofuroxans: Recent developments[J]. Mini Reviews
Free Radic Biol Med, 2008, 45(1): 18-31. in Medicinal Chemistry, 2005, 5(1): 57-71.
[19] ORONSKY B, FANGER G R, ORONSKY N, et al. The [32] LI H, WANG K, WAN Q, et al. Design, synthesis and anti-tumor
implications of hyponitroxia in cancer[J]. Translational Oncology, evaluation of novel steroidal glycoconjugate with furoxan
2014, 7(2): 167-173. derivatives[J]. Steroids, 2018, 141: 81-95.
[20] ORTEGA A, CARRETERO J, OBRADOR E, et al. Tumoricidal [33] FRY N L, MASCHARAK P K. Photoactive ruthenium nitrosyls as
activity of endothelium-derived NO and the survival of metastatic NO donors: How to sensitize them toward visible light[J]. Accounts
cells with high GSH and Bcl-2 levels[J]. Nitric Oxide, 2008, 19(2): of Chemical Research, 2011, 44(4): 289-298.
107-114. [34] ROSE M J, FRY N L, MARLOW R, et al. Sensitization of
[21] REIF D W, SIMMONS R D. Nitric oxide mediates iron release from ruthenium nitrosyls to visible light via direct coordination of the dye
ferritin[J]. Archives of Biochemistry & Biophysics, 1990, 283(2): resorufin: Trackable no donors for light-triggered no delivery to
537-541. cellular targets[J]. Journal of the American Chemical Society, 2008,
[22] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. 130(27): 8834-8846.
Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. [35] PATRA A K, ROSE M J, MURPHY K A, et al. Photolabile
Cell, 2012, 149(5): 1060-1072. ruthenium nitrosyls with planar dicarboxamide tetradentate N4
[23] FUKUMURA D, KASHIWAGI S, JAIN R K. The role of nitric ligands: Effects of in-plane and axial ligand strength on NO
oxide in tumour progression[J]. Nature Reviews Cancer, 2006, 6(7): release[J]. Inorganic Chemistry, 2004, 43(14): 4487-4495.
521-534. [36] XIANG H J, DENG Q, AN L, et al. Tumor cell specific and
[24] BARITAKI S, HUERTA Y S, SAHAKYAN A, et al. Mechanisms of lysosome-targeted delivery of nitric oxide for enhanced
nitric oxide-mediated inhibition of EMT in cancer[J]. Cell Cycle, photodynamic therapy triggered by 808 nm near-infrared light[J].
2010, 9(24): 4931-4940. Chemical Communications, 2016, 52(1): 148-151.
[25] VALENTINA R, EMILIA D P, SONIA Z, et al. Nitric [37] DUTRA L A, ALMEIDA L, PASSALACQUA T G, et al.
oxide-mediated activity in anti-cancer photodynamic therapy[J]. Leishmanicidal activities of novel synthetic furoxan and
Nitric Oxide, 2013, 30(4): 26-35. benzofuroxan derivatives[J]. Antimicrobial Agents and
[26] MENG F (孟飞), TANG J (汤佳), CHEN L (陈莉). Advances in Chemotherapy, 2014, 58(8): 4837-4847.
1
research on furoxans-based nitric oxide-donating drugs[J]. Progress [38] CHEN H, WARUNA R G, JIAO L J, et al. Chlorin e6 13 :
2
in Pharmaceutical Sciences(药学进展), 2012, 36(3): 97-103. 15 -anhydride: A key intermediate in conjugation reactions of chlorin
[27] BRADLEY S A, STEINERT J R. Characterisation and comparison e6[J]. European Journal of Organic Chemistry, 2015, 2015(17):
of temporal release profiles of nitric oxide generating donors[J]. 3661-3665.
Journal of Neuroscience Methods, 2015, 245: 116-124. [39] JAMES N, CHERUKU R, MISSERT J, et al. Measurement of
[28] LARIN A A, FERSHTAT L L, USTYUZHANINA N E, et al. New cyanine dye photobleaching in photosensitizer cyanine dye conjugates
hybrid furoxan structures with antiaggregant activity[J]. Mendeleev could help in optimizing light dosimetry for improved photodynamic
Communications, 2018, 28(6): 595-597. therapy of cancer[J]. Molecules, 2018, 23(8): 1842- 1843.
[29] TUMNBULL C M, CENA C, FRUTTERO R, et al. Mechanism of [40] DINCALP H, KIZILOK Ş, İCLI S. Targeted singlet oxygen
action of novel NO releasing furoxan derivatives of aspirin in human generation using different DNA-interacting perylene diimide type
platelets[J]. British Journal of Pharmacology, 2010, 148(4): 517-526. photosensitizers[J]. Journal of Fluorescence, 2014, 24(3): 917-924.
[30] BUONSANTI M F, BERTINARIA M, STILO A D, et al. Nitric [41] THOMAS C E, DARLEY U V. Forum on therapeutic applications of
oxide donor beta2-agonists: Furoxan derivatives containing the reactive oxygen and nitrogen species in human disease[J]. Free
fenoterol moiety and related furazans[J]. Journal of Medicinal Radical Biology and Medicine, 2000, 28(10): 1449-1450.