Page 173 - 《精细化工》2022年第1期
P. 173

第 1 期                TAUQEER Ahmad,等:  螺线形碳纳米纤维基整体式催化剂活性载体                               ·163·


                 carbon  nanotubes at electrospun carbon  nanofibers composite as an   [16]  SRIDHAR D, OMANOVIC S, MEUNIER J L. Direct  growth of
                 efficient electrocatalyst for oxygen reduction[J]. Electrochimica Acta,   carbon nanofibers on nickel foam and its application as electrochemical
                 2014, 138: 318-324.                               supercapacitor electrodes[C]// ECS Meeting Abstracts, 2017.
            [3]   SHAB  K  J,  SHUKLA A D, SHAH  D O,  et al. Effect of  organic   [17]  ALDAMA I, SIWEK K, AMARILLIA J,  et al. Electrochemical
                 modifiers on dispersion of organoclay in polymer nanocomposites to   response of a high-power asymmetric supercapacitor  based on
                 improve mechanical properties[J]. Polymer, 2016, 97: 525-532.   tailored MnO x/Ni foam and carbon cloth in neutral and alkaline
            [4]   GUO X Y. Inhibiting carbon growth at the initial stage of  metal   electrolytes[J]. Journal of Energy Storage, 2019, 22: 345-353.
                 dusting corrosion of high temperature alloys[D]. Trondheim:Norges   [18]  WEI M,WU X,YAO Y,  et al. Toward high micro-supercapacitive
                 teknisk-naturvitenskapelige Universitet, 2020.    performance by constructing graphene-supported NiMoS 4 hybrid
            [5]   SECOR  E  B, HERSAM M C. Emerging carbon and post-carbon   materials on 3D current collectors[J]. ACS Sustainable Chemistry &
                 nanomaterial inks for printed electronics[J]. Journal of Physical   Engineering, 2019, 7(24): 19779-19786.
                 Chemistry Letters, 2015, 6(4): 620-626.       [19]  ZHANG X H, SHEN W L, LI Z,et al. Carbon-based active support
            [6]   WU Z P, WANG Y L, LIU X B, et al. Carbon-nanomaterial-based   for water oxidation electrocatalyst: Making full use of the available
                 flexible batteries for wearable electronics[J]. Advanced  Materials,   surface area[J]. Carbon, 2020, 167: 548-558.
                 2019, 31(9): 1800716.                         [20]  WANG J Y, JI L L,ZUO S S, et al. Hierarchically structured 3D
            [7]   SECOR E B, GAO T Z, ISLAM A E, et al. Enhanced conductivity,   integrated electrodes by galvanic replacement reaction for highly
                 adhesion, and environmental stability of printed graphene inks with   efficient water splitting[J]. Advanced Energy Materials, 2017, 7(14):
                 nitrocellulose[J]. Chemistry of Materials, 2017, 29(5): 2332-2340.   1700107.
            [8]   CINTI S, ARDUINI F, CARBONE M, et al. Screen-printed electrodes   [21]  ZOU X,  YI P, GUO D,  et al. Ultrafast formation of  amorphous
                 modified  with  carbon nanomaterials:  A comparison among carbon   bimetallic hydroxide films on 3D conductive sulfide nanoarrays for
                 black, carbon nanotubes and  graphene[J]. Electroanalysis, 2015,   large-current-density oxygen evolution electrocatalysis[J]. Journal of
                 27(9): 2230-2238.                                 Colloid and Interface Science, 2017, 29(22): 1700404.
            [9]   BONACCORSO F, BARTOLOTTA  A, COLEMAN J  N,  et al.   [22]  LUO X Y,  YANG Q, DONG Y L,  et al. Maximizing pore and
                 2D-crystal-based functional inks[J]. Advanced Materials, 2016,   heteroatom  utilization within N, P-co-doped polypyrrole-derived
                 28(29): 6136-6166.                                carbon nanotubes for high-performance supercapacitors[J]. Journal of
            [10]  BOUNEGRU A V, APETREI  C J  C.  Carbonaceous nanomaterials   Materials Chemistry A, 2020, 8(34): 17558-17567.
                 employed in the development of electrochemical sensors based on   [23]  DEERATTRAKUL V,  HIRUNPINYOPAS W, PISITPIPATHSIN
                 screen-printing technique—A review[J]. Catalysts, 2020, 10(6): 680.   N, et al. The electrochemistry of size dependent graphene via liquid
            [11]  LOPEZ-BARROSO J, MARTINEZ-HERNÁNDEZ A L, RIVERA-   phase exfoliation: Capacitance  and ionic transport[J]. Physical
                 ARMENTA J L, et al. Multidimensional nanocomposites of epoxy   Chemistry Chemical Physics, 2021, 23(20): 11616-11623.
                 reinforced with 1D and 2D carbon nanostructures for improve   [24]  GALAL A, HASSAN H K, JACOB T, et al. Enhancing the specific
                 fracture resistance[J]. Polymers, 2018, 10(3): 281.   capacitance of SrRuO 3 and reduced graphene oxide in NaNO 3, H 3PO 4
            [12]  BALASUBRAMANIAN K, KERN  K J A M. 25th  Anniversary   and KOH electrolytes[J]. Electrochimica Acta, 2018, 260: 738-747.
                 article:  Label-free  electrical  biodetection  using  carbon  [25]  MORENO-CASTILLA C,  GARCIA-ROSERO H, CARRASCO-
                 nanostructures[J]. Advanced Materials, 2014, 26(8): 1154-1175.   MARÍN F J M. Symmetric supercapacitor electrodes from KOH
            [13]  MENDES R G, WROBEL P S, BACHMATIUK A,  et al. Carbon   activation of pristine, carbonized, and hydrothermally treated Melia
                 nanostructures as a multi-functional platform for sensing applications[J].   azedarach stones[J]. Materials, 2017, 10(7): 747.
                 Chinese Chemical Letters, 2018, 6(4): 60.     [26]  ABDELKAREEM  M A, SAYED  E T, ALAWADHI  H,  et al.
            [14]  ZHU C Z, LI H,  FU S,  et al. Highly efficient nonprecious metal   Synthesis and testing of cobalt leaf-like nanomaterials as an active
                 catalysts towards oxygen  reduction reaction  based on  three-   catalyst for ethanol oxidation[J]. International Journal of Hydrogen
                 dimensional porous carbon nanostructures[J]. Chemical Society   Energy, 2020, 45(35): 17311-17319.
                 Reviews, 2016, 45(3): 517-531.                [27]  JIANG W,  HU  F X, YAN Q  Y,  et al. Investigation on
            [15]  GULDI D M, SGOBBA V J C C. Carbon nanostructures for solar   electrochemical behaviors of NiCo 2O 4 battery-type supercapacitor
                 energy conversion schemes[J]. Chemical  Communications, 2011,   electrodes: The role of an aqueous electrolyte[J]. International
                 47(2): 606-610.                                   Journal of Hydrogen Energy, 2017, 4(10): 1642-1648.


            (上接第 157 页)                                            Equilibrium studies[J]. Biophysical Journal, 2004, 86(4): 2392-2402.
            [30]  WACHIRASIRI K, WANLAPA S, UTTAPAP D, et al. Use of amino   [36]  HAWE A, SUTTER M, JISKOOT W. Extrinsic fluorescent dyes as
                 acids as a phosphate alternative and their effects on quality of frozen   tools for protein characterization[J]. Pharmaceutical Research, 2008,
                 white shrimps (Penaeus vanamei)[J]. LWT-Food  Science and   25(7): 1487-1499.
                 Technology, 2016, 69: 303-311.                [37]  RAMÍREZ-SUÁREZ J C, ADDO K, XIONG Y L. Gelation of mixed
            [31]  HUANG Y J, ZHANG D J, ZHANG Y Y, et al. Role of ultrasound   myofibrillar/wheat  gluten  proteins  treated  with  microbial
                 and L-lysine/L-argnine in improving the physical stability of myosin-   transglutaminase[J]. Food Research International, 2005, 38(10):
                 soybean oil emulsion[J]. Food Hydrocolloids, 2021, 111: 106367.   1143-1149.
            [32]  KIM N A, HADA S, THAPA R, et al. Arginine as a protein stabilizer   [38]  SHEVKANI K, SINGH N, RANA J C, et al. Relationship between
                 and destabilizer in liquid formulations[J]. International Journal of   physicochemical and functional properties of amaranth (Amaranthus
                 Pharmaceutics, 2016, 513(1/2): 26-37.             hypochondriacus)  protein isolates[J]. International Journal of Food
            [33]  MALHOTRA A, COUPLAND J N. The effect of surfactants on the   Science and Technology, 2014, 49(2): 541-550.
                 solubility, zeta potential, and viscosity of soy protein isolates[J].   [39]  MORALES R, MARTÍNEZ K D, PIZONES RUIZ-HENESTROSA
                 Food Hydrocolloids, 2004, 18(1): 101-108.         V M, et al. Modification of foaming properties of soy protein isolate
            [34]  TENG Z, LUO Y C, WANG Q. Nanoparticles synthesized from soy   by high ultrasound intensity: Particle size  effect[J].  Ultrasonics
                 protein: Preparation, characterization, and application for   Sonochemistry, 2015, 26: 48-55.
                 nutraceutical encapsulation[J]. Journal of  Agricultural and  Food   [40]  SHI T, LIU H, SONG T, et al. Use of L-arginine-assisted ultrasonic
                 Chemistry, 2012, 60(10): 2712-2720.               treatment to change the molecular and interfacial characteristics  of
            [35]  VISEU M I, CARVALHO T I, COSTA S M B. Conformational   fish myosin and enhance the physical stability of the emulsion[J].
                 transitions in  β-lactoglobulin induced by  cationic  amphiphiles:   Food Chemistry, 2021, 342: 128314.
   168   169   170   171   172   173   174   175   176   177   178