Page 73 - 《精细化工》2022年第1期
P. 73
第 1 期 崔乐雨,等: 微乳液泡沫驱油技术原理、挑战和研究进展 ·63·
using hydrophilic lipophilic deviation (HLD) method[J]. Colloids 241: 83-93.
and Surfaces A: Physicochemical and Engineering Aspects, 2015, [42] PATZEK T W, KOINIS M T. Kern river steam-foam pilots[J].
488: 36-45. Journal of Petroleum Technology, 1990, 42(4): 496-503.
[25] GAO S T (高树棠), LIANG G Q (梁桂卿), CHEN H Q (陈慧琴), [43] MOHAMMADI S S, VAN SLYKE D C, GANONG B L.
et al. Laboratory study on petroleum sulfonate system with low Steam-foam pilot project in Dome-Tumbador, Midway-Sunset
interfacial tension[J]. Daqing Oilfield (大庆油田), 1982, 1(1): 59-67. field[J]. SPE Reservoir Engineering, 1989, 4(1): 7-16.
[26] GAO S T (高树棠), LIANG G Q (梁桂卿), CHEN H Q (陈慧琴). A [44] MOHAMMADI S, MCCOLLUM T. Steam-foam pilot project in
study on the optimum formulation of petroleum sulfonate-oil-brine Guadalupe field, California[J]. SPE Reservoir Engineering, 1989,
systems with minimum interfacial tension and maximum displacement 4(1): 17-23.
efficiency[J]. Petroleum Exploration and Development (石油勘探与 [45] MARTIN F D, STEVENS J E, HARPOLE K J. CO 2-foam field test
开发), 1984, 1(1): 55-63. at the East Vacuum Grayburg/San Andres Unit[J]. SPE Reservoir
[27] WANG D, ZHANG Z, CHENG J, et al. Pilot test of alkaline Engineering, 1995, 10(4): 266-272.
surfactant polymer flooding in daqing oil field[J]. SPE Reservoir [46] XING D, WEI B, MCLENDON W J, et al. CO 2-soluble, nonionic,
Engineering, 1997, 12: 229-233. water-soluble surfactants that stabilize CO 2-in-brine foams[J]. SPE
[28] WANG D C (王德辰), YANG T R (杨天瑞), DU T P (杜天平), Journal, 2012, 17(4): 1172-1185.
et al.Micellar polymer flooding pilot test in H184 well group, [47] CUI L, MA K, PUERTO M, et al. Mobility of Ethomeen C12 and
Laojunmiao oil field[J]. Petroleum Exploration and Development (石 carbon dioxide (CO 2) foam at high temperature/high salinity and in
油勘探与开发), 1999, 26(1): 47-49. carbonate cores[J]. SPE Journal, 2016, 21(4): 1-51.
[29] ZHANG J C (张继超), MA B D (马宝东), ZHANG Y M (张永民), [48] CUI L, DUBOS F, BOURREL M. Novel alkyl-amine surfactants for
et al. Interfacial performance of sodium polyethoxylatedhexadecano- CO 2 emulsion assisted enhanced oil recovery[J]. Energy & Fuels,
lsulfonates with different number of EO groups[J].China Surfactant 2018, 32(8): 8220-8229.
Detergent & Cosmetics (日用化学工业), 2011, 41(2): 87-91. [49] LIU Z K (刘泽凯), MIN J H (闵家化). Application of foam flood in
[30] LI N, ZHANG G, GE J, et al. Ultra-low interfacial tension between Shengli oil field[J]. Technology of Oil and Gas Recovery (油气采收
heavy oil and betaine-type amphoteric surfactants[J]. Journal of 率技术), 1996, 3(3): 23-29.
Dispersion Science and Technology, 2012, 33(2): 258-264. [50] ZHAO Y (赵燕), WU G H (吴光焕), SUN Y H (孙业恒). Field test
[31] JIANG P, LI N, GE J, et al. Efficiency of a sulfobetaine-type and effect analysis of foam-assisted steam flooding[J]. Petroleum
surfactant on lowering IFT at crude oil-formation water interface[J]. Geology and Recovery Efficiency (油气地质与采收率), 2017,
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 24(5): 106-110.
2014, 443: 141-148. [51] CHEN Y Y (陈玉英), LIU Z C (刘子聪), CHEN Q W (陈清伟),
[32] LI Y, KONG B, ZHANG W, et al. Field application of alkali/ et al. A preliminary analysis of the field results of foam flood in
surfactant/polymer flood with novel mixtures of anionic/cationic Baise oil fields[J]. Oilfield Chemistry (油田化学), 1998, 15(2): 141-
surfactants for high-temperature and high-water-cut mature sandstone 145.
reservoir[J]. SPE Reservoir Evaluation & Engineering, 2020, 23(3): [52] YU H Y (于会宇), WAN X D (万新德), LIU Q (刘琴), et al. Lessons
1-12. from the pilot test of foam[J]. Petroleum Geology & Oilfield
[33] LI Y C (李应成), BAO X N (鲍新宁), ZHANG W D (张卫东), Development in Daqing (大庆石油地质与开发), 2001, 20(2): 108-
et al.Research progress of surfactants for enhanced oil recovery at 110.
home and abroad[J]. Fine Chemicals (精细化工), 2020, 37(4): 649- [53] ZHAO C J (赵长久), ME S C (么世椿), ZHOU S H (周淑华), et al.
656. Discussion on two key questions regarding ultralow tension foam[J].
[34] LI Y, ZHANG W, SHEN Z, et al. Pilot test of surfactant-polymer Petroleum Geology & Oilfield Development in Daqing (大庆石油地
flood with mixtures of anionic-cationic surfactants for high 质与开发), 2005, 24(1):87-89.
temperature low permeability sandstone reservoir[J]. SPE Reservoir [54] ANDRIANOV A, FARAJZADEH R, MAHMOODI N, et al.
Evaluation & Engineering, 2021, 24:889-900. Immiscible foam for enhancing oil recovery: Bulk and porous media
[35] JOUENNE S. Polymer flooding in high temperature, high salinity experiments[J]. Industrial & Engineering Chemistry Research, 2012,
conditions: Selection of polymer type and polymer chemistry, 51(5): 2214-2226.
thermal stability[J]. Journal of Petroleum Science & Engineering, [55] LI R F, HIRASAKI G, MILLER C, et al. Wettability alteration and
2020, 195: 107545. foam mobility control in a layered, 2D heterogeneous sandpack[J].
[36] MAGHSOUDIAN A, TAMSILIAN Y, KORD S, et al. Styrene SPE Journal, 2012, 17(4): 1207-1220.
intermolecular associating incorporated-polyacrylamide flooding of [56] SUN Y, LI Y, LI C, et al. Molecular array behavior and synergistic
crude oil in carbonate coated micromodel system at high effect of sodium alcohol ether sulphate and carboxyl betaine/
temperature, high salinity condition: Rheology, wettability alteration, sulfobetaine in foam film under high salt conditions[J]. Colloids and
recovery mechanisms[J]. Journal of Molecular Liquids, 2021, 337: Surfaces A: Physicochemical and Engineering Aspects, 2015, 480:
116206. 138-148.
[37] SERIGHT R S, WAVRIK K E, ZHANG G, et al. Stability and [57] SHI S L (史胜龙), WANG Y F (王业飞), WANG Z B (王振彪),
behavior in carbonate cores for new enhanced-oil-recovery polymers et al. Microfoam flooding effect in high temperature and high salinity
at elevated temperatures in hard saline brines[J]. SPE Reservoir reservoir[J]. Oilfield Chemistry (油田化学), 2017, 34(1): 96-102.
Evaluation & Engineering, 2021, 24(1): 1-18. [58] SUN S, ZHANG X, WANG P, et al. Emulsified oil phase induced
[38] GÉRAUD B, JONES S A, CANTAT I, et al. The flow of a foam in a internal instability of ionic and nonionic foams revealed by coarse-
two-dimensional porous medium[J]. Water Resources Research, grained molecular dynamics simulation[J]. Computational Materials
2016, 52(2): 773-790. Science, 2019, 169: 109111.
[39] XIAO S, ZENG Y, VAVRA E D, et al. Destabilization, propagation, [59] PU W, WEI P, SUN L, et al. Investigation on stabilization of foam in
and generation of surfactant-stabilized foam during crude oil the presence of crude oil for improved oil recovery[J]. Journal of
displacement in heterogeneous model porous media[J]. Langmuir, Dispersion Science and Technology, 2019, 40(5): 646-656.
2018, 34(3): 739-749. [60] DAS A, NGUYEN N, FARAJZADEH R, et al. Laboratory study of
[40] BOEIJE C S, ROSSEN W R. Gas-injection rate needed for SAG injection strategy for low-tension-gas flooding in high salinity, tight
foam processes to overcome gravity override[J]. SPE Journal, 2015, carbonate reservoirs[C]// SPE EOR Conference at Oil and Gas West
20(1): 49-59. Asia, 2018: SPE-190348-MS.
[41] SUN L, BAI B, WEI B, et al. Recent advances of surfactant- [61] DONG P, PUERTO M C, MA K, et al. Ultralow-interfacial-tension
stabilized N 2/CO 2 foams in enhanced oil recovery[J]. Fuel, 2019, foam-injection strategy in high-temperature ultrahigh-salinity