Page 186 - 《精细化工》2022年第10期
P. 186
·2120· 精细化工 FINE CHEMICALS 第 39 卷
(3)5Zr/g-C 3 N 4 光催化剂性能提升是由于 Zr 掺 carbon nitride as the photocatalyst for wastewater treatment under
visible light irradiation[J]. Fuel, 2020, 280: 118544.
杂增强了可见光的吸收,在高温焙烧过程中促进了
[16] SHI L, LIANG L, WANG F X, et al. Polycondensation of guanidine
g-C 3 N 4 片层的破裂,增大了 g-C 3 N 4 的比表面积,较 hydrochloride into a graphitic carbon nitride semiconductor with a
大的比表面积在光催化反应中能提供更多活性位 large surface area as a visible light photocatalyst[J]. Catalysis
Science & Technology, 2014, 4(9): 3235-3243.
点,也得益于光生电子与空穴能够较好地分离,使 [17] WANG X C, CHEN X F, THOMAS A, et al. Metal-containing
其更好地参与到光催化进程中。 carbon nitride compounds: A new functional organic-metal hybrid
material[J]. Advanced Materials, 2009, 21(16): 1609-1612.
(4)捕获剂实验说明了降解 RhB 的活性物种主 [18] GAO J T, WANG Y, ZHOU S J, et al. A facile one-step synthesis of
–
要为•O 2 ;循环实验表明,所制备的 5Zr/g-C 3 N 4 催化 Fe-doped g-C 3N 4 nanosheets and their improved visible-light
photocatalytic performance[J]. ChemCatChem, 2017, 9(9): 1708-1715.
剂具有较好的稳定性。本研究对以盐酸胍为前驱体
[19] CHI X H, LIU F J, GAO Y, et al. An efficient B/Na co-doped porous
对 g-C 3 N 4 进行掺杂改性有一定的参考价值。 g-C 3N 4 nanosheets photocatalyst with enhanced photocatalytic
hydrogen evolution and degradation of tetracycline under visible
参考文献: light[J]. Applied Surface Science, 2022, 576: 151837.
[20] HU X L, LU P, PAN R, et al. Metal-ion-assisted construction of
[1] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for cyano group defects in g-C 3N 4 to simultaneously degrade wastewater
water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278.
[2] HAO M J, QIU M Q, YANG H, et al. Recent advances on and produce hydrogen[J]. Chemical Engineering Journal, 2021, 423:
preparation and environmental applications of MOF-derived carbons 130278.
in catalysis[J]. Science of the Total Environment, 2021, 760: 143333. [21] LIN Q Y, LI L, LIANG S J, et al. Efficient synthesis of monolayer
[3] ZHANG H J, ZUO X Q, TANG H B, et al. Origin of photoactivity in carbon nitride 2D nanosheet with tunable concentration and
graphitic carbon nitride and strategies for enhancement of photocatalytic enhanced visible-light photocatalytic activities[J]. Applied Catalysis
efficiency: Insights from first-principles computations[J]. Physical B: Environmental, 2015, 163: 135-142.
[22] WANG J C, CUI C X, LI Y, et al. Porous Mn doped g-C 3N 4
Chemistry Chemical Physics, 2015, 17(9): 6280-6288.
[4] RONG X S, QIU F X, ZHAO H, et al. Fabrication of single-layer photocatalysts for enhanced synergetic degradation under visible-light
graphitic carbon nitride and coupled systems for the photocatalytic illumination[J]. Journal of Hazardous Materials, 2017, 339: 43-53.
degradation of dyes under visible-light irradiation[J]. European [23] WANG N, WANG J, HU J H, et al. Design of palladium-doped
Journal of Inorganic Chemistry, 2015, 2015, (8): 1359-1367. g-C 3N 4 for enhanced photocatalytic activity toward hydrogen evolution
[5] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride reaction[J]. ACS Applied Energy Materials, 2018, 1(6): 2866-2873.
(g-C 3N 4)-based photocatalysts for artificial photosynthesis and [24] CHARY K V R, SAGAR G V, NARESH D, et al. Characterization
environmental remediation: Are we a step closer to achieving and reactivity of copper oxide catalysts supported on TiO 2-ZrO 2[J].
sustainability?[J]. Chemical Reviews, 2016, 116(12): 7206-7216. Journal of Physical Chemistry B, 2005, 109(19): 9437-9444.
[6] ZHAO X L (赵西连), BU X Y (卜鑫焱), FAN H (范辉), et al. [25] DONG G H, AI Z H, ZHANG L Z. Efficient anoxic pollutant
Preparation of g-C 3N 4/Bi 2MoO 6/Ag 3PO 4 composite and its visible removal with oxygen functionalized graphitic carbon nitride under
light catalytic performance[J]. Fine Chemicals (精细化工), 2022, visible light[J]. RSC Advances, 2014, 4(11): 5553-5560.
39(3): 533-540. [26] MAHMOOD Q, AFZAL A, SIDDIQI H M, et al. Sol-gel synthesis of
[7] MA L B (马立标), ZHANG B (张宾), LIU R Z (柳荣展), et al. tetragonal ZrO 2 nanoparticles stabilized by crystallite size and
Preparation and photocatalytic performance of potassium doped oxygen vacancies[J]. Journal of Sol-Gel Science and Technology,
g-C 3N 4 sludge-based composite[J]. Fine Chemicals (精细化工), 2013, 67(3): 670-674.
2020, 37(11): 2255-2261. [27] LI J X, WANG Y H, LI X C, et al. A facile synthesis of
[8] BAI Y H, ZHENG Y J, WANG Z, et al. Metal-doped carbon nitrides: high-crystalline g-C 3N 4 nanosheets with closed self-assembly
Synthesis, structure and applications[J]. New Journal of Chemistry, strategy for enhanced photocatalytic H 2 evolution[J]. Journal of
2021, 45(27): 11876-11892. Alloys and Compounds, 2021, 881(10): 160551.
[9] WANG Y, MAO J, MENG X G, et al. Catalysis with two-dimensional [28] OH W D, CHANG V W C, HU Z T, et al. Enhancing the catalytic
materials confining single atoms: Concept, design, and applications[J]. activity of g-C 3N 4 through Me doping (Me=Cu, Co and Fe) for
Chemical Reviews, 2019, 119(3): 1806-1854. selective sulfathiazole degradation via redox-based advanced oxidation
[10] JIANG J, CAO S W, HU C L, et al. A comparison study of alkali process[J]. Chemical Engineering Journal, 2017, 323: 260-269.
metal-doped g-C 3N 4 for visible-light photocatalytic hydrogen [29] JIANG D L, XIAO P, SHAO L Q, et al. RGO-promoted all-solid-
evolution[J]. Chinese Journal of Catalysis, 2017, 38(12): 1981-1989. state g-C 3N 4/BiVO 4 Z-scheme heterostructure with enhanced
[11] WANG M, GUO P Y, ZHANG Y, et al. Synthesis of hollow photocatalytic activity toward the degradation of antibiotics[J].
lantern-like Eu( Ⅲ )-doped g-C 3N 4 with enhanced visible light Industrial & Engineering Chemistry Research, 2017, 56(31): 8823-
photocatalytic perfomance for organic degradation[J]. Journal of 8832.
Hazardous Materials, 2018, 349: 224-233. [30] BHARTI B, LI H L, LIU D, et al. Efficient Zr-doped FS-TiO 2/SiO 2
[12] ZHANG W J, XU D T, WANG F J, et al. Element-doped graphitic photocatalyst and its performance in acrylonitrile removal under
carbon nitride: Confirmation of doped elements and applications[J]. simulated sunlight[J]. Applied Physics A, 2020, 126(11): 887.
Nanoscale Advances, 2021, 3(15): 4370-4387. [31] BUI T S, BANSAL P, LEE B K, et al. Facile fabrication of novel
[13] LIU X L, MA R, ZHUANG L, et al. Recent developments of doped Ba-doped g-C 3N 4 photocatalyst with remarkably enhanced
g-C 3N 4 photocatalysts for the degradation of organic pollutants[J]. photocatalytic activity towards tetracycline elimination under visible-
Critical Reviews in Environmental Science and Technology, 2021, light irradiation[J]. Applied Surface Science, 2020, 506: 144184.
51(8): 751-790. [32] PAN H Y, GU J M, HOU K Y, et al. High-efficiency, compressible,
[14] WANG Y G, WANG Y Z, LI Y G, et al. Simple synthesis of Zr-doped and recyclable reduced graphene oxide/chitosan composite aerogels
graphitic carbon nitride towards enhanced photocatalytic performance supported g-C 3N 4/BiOBr photocatalyst for adsorption and degradation
under simulated solar light irradiation[J]. Catalysis Communications, of rhodamine B[J]. Journal of Environmental Chemical Engineering,
2015, 72: 24-28. 2022, 10(2): 107157.
[15] GUO X L, DUAN J H, WANG W W, et al. Modified graphitic [33] SHI W N, FANG W X, WANG J C, et al. pH-controlled mechanism