Page 186 - 《精细化工》2022年第10期
P. 186

·2120·                            精细化工   FINE CHEMICALS                                 第 39 卷

                (3)5Zr/g-C 3 N 4 光催化剂性能提升是由于 Zr 掺                  carbon nitride as the photocatalyst for wastewater treatment under
                                                                   visible light irradiation[J]. Fuel, 2020, 280: 118544.
            杂增强了可见光的吸收,在高温焙烧过程中促进了
                                                               [16]  SHI L, LIANG L, WANG F X, et al. Polycondensation of guanidine
            g-C 3 N 4 片层的破裂,增大了 g-C 3 N 4 的比表面积,较                  hydrochloride into a graphitic carbon nitride semiconductor with a
            大的比表面积在光催化反应中能提供更多活性位                                  large surface area as a visible light photocatalyst[J]. Catalysis
                                                                   Science & Technology, 2014, 4(9): 3235-3243.
            点,也得益于光生电子与空穴能够较好地分离,使                             [17]  WANG X C, CHEN X F, THOMAS A,  et al. Metal-containing
            其更好地参与到光催化进程中。                                         carbon nitride compounds: A new functional organic-metal hybrid
                                                                   material[J]. Advanced Materials, 2009, 21(16): 1609-1612.
                (4)捕获剂实验说明了降解 RhB 的活性物种主                       [18]  GAO J T, WANG Y, ZHOU S J, et al. A facile one-step synthesis of
                   –
            要为•O 2 ;循环实验表明,所制备的 5Zr/g-C 3 N 4 催化                   Fe-doped g-C 3N 4 nanosheets and their improved  visible-light
                                                                   photocatalytic performance[J]. ChemCatChem, 2017, 9(9): 1708-1715.
            剂具有较好的稳定性。本研究对以盐酸胍为前驱体
                                                               [19]  CHI X H, LIU F J, GAO Y, et al. An efficient B/Na co-doped porous
            对 g-C 3 N 4 进行掺杂改性有一定的参考价值。                            g-C 3N 4 nanosheets photocatalyst with enhanced photocatalytic
                                                                   hydrogen evolution and degradation  of tetracycline under visible
            参考文献:                                                  light[J]. Applied Surface Science, 2022, 576: 151837.
                                                               [20]  HU X L, LU P, PAN R,  et al. Metal-ion-assisted construction of
            [1]   KUDO  A, MISEKI Y. Heterogeneous photocatalyst materials for   cyano group defects in g-C 3N 4 to simultaneously degrade wastewater
                 water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278.
            [2]   HAO  M J, QIU  M Q, YANG H,  et al. Recent advances on   and produce hydrogen[J]. Chemical Engineering Journal, 2021, 423:
                 preparation and environmental applications of MOF-derived carbons   130278.
                 in catalysis[J]. Science of the Total Environment, 2021, 760: 143333.     [21]  LIN Q Y, LI L, LIANG S J, et al. Efficient synthesis of monolayer
            [3]   ZHANG H J, ZUO X Q, TANG H B, et al. Origin of photoactivity in   carbon  nitride  2D nanosheet with tunable concentration and
                 graphitic carbon nitride and strategies for enhancement of photocatalytic   enhanced visible-light photocatalytic activities[J]. Applied Catalysis
                 efficiency: Insights from first-principles computations[J]. Physical   B: Environmental, 2015, 163: 135-142.
                                                               [22]  WANG J  C,  CUI C X, LI Y,  et al. Porous Mn  doped g-C 3N 4
                 Chemistry Chemical Physics, 2015, 17(9): 6280-6288.
            [4]   RONG X S, QIU F X, ZHAO H, et al. Fabrication of single-layer   photocatalysts for enhanced synergetic degradation under visible-light
                 graphitic carbon nitride and coupled systems for the photocatalytic   illumination[J]. Journal of Hazardous Materials, 2017, 339: 43-53.
                 degradation of dyes under visible-light irradiation[J].  European   [23]  WANG N, WANG J, HU J  H,  et al. Design of palladium-doped
                 Journal of Inorganic Chemistry, 2015, 2015, (8): 1359-1367.     g-C 3N 4 for enhanced photocatalytic activity toward hydrogen evolution
            [5]   ONG W  J, TAN L L, NG Y  H,  et al. Graphitic carbon nitride   reaction[J]. ACS Applied Energy Materials, 2018, 1(6): 2866-2873.
                 (g-C 3N 4)-based photocatalysts for artificial photosynthesis and   [24]  CHARY K V R, SAGAR G V, NARESH D, et al. Characterization
                 environmental remediation: Are we a step closer to  achieving   and reactivity of copper oxide catalysts supported on TiO 2-ZrO 2[J].
                 sustainability?[J]. Chemical Reviews, 2016, 116(12): 7206-7216.     Journal of Physical Chemistry B, 2005, 109(19): 9437-9444.
            [6]   ZHAO X  L (赵西连),  BU X Y  (卜鑫焱), FAN H (范辉),  et al.   [25]  DONG G H, AI Z H, ZHANG  L Z. Efficient anoxic pollutant
                 Preparation of g-C 3N 4/Bi 2MoO 6/Ag 3PO 4  composite and  its visible   removal with oxygen functionalized graphitic carbon nitride under
                 light catalytic performance[J]. Fine  Chemicals (精细化工), 2022,   visible light[J]. RSC Advances, 2014, 4(11): 5553-5560.
                 39(3): 533-540.                               [26]  MAHMOOD Q, AFZAL A, SIDDIQI H M, et al. Sol-gel synthesis of
            [7]   MA  L B (马立标), ZHANG  B (张宾), LIU R Z (柳荣展),  et al.   tetragonal ZrO 2 nanoparticles  stabilized by crystallite size and
                 Preparation and photocatalytic performance of potassium doped   oxygen vacancies[J]. Journal of Sol-Gel Science  and Technology,
                 g-C 3N 4 sludge-based composite[J]. Fine Chemicals (精细化工),   2013, 67(3): 670-674.
                 2020, 37(11): 2255-2261.                      [27]  LI J X,  WANG  Y H, LI  X C,  et al. A facile synthesis of
            [8]   BAI Y H, ZHENG Y J, WANG Z, et al. Metal-doped carbon nitrides:   high-crystalline g-C 3N 4 nanosheets with closed self-assembly
                 Synthesis, structure and applications[J]. New Journal of Chemistry,   strategy for enhanced photocatalytic H 2 evolution[J].  Journal of
                 2021, 45(27): 11876-11892.                        Alloys and Compounds, 2021, 881(10): 160551.
            [9]   WANG Y, MAO J, MENG X G, et al. Catalysis with two-dimensional   [28]  OH W D, CHANG V W C, HU Z T, et al. Enhancing the catalytic
                 materials confining single atoms: Concept, design, and applications[J].   activity of g-C 3N 4 through Me doping (Me=Cu, Co and Fe) for
                 Chemical Reviews, 2019, 119(3): 1806-1854.        selective sulfathiazole degradation via redox-based advanced oxidation
            [10]  JIANG J, CAO S W, HU C L, et al. A comparison study of alkali   process[J]. Chemical Engineering Journal, 2017, 323: 260-269.
                 metal-doped g-C 3N 4 for visible-light photocatalytic hydrogen   [29]  JIANG D L, XIAO P, SHAO  L  Q,  et al. RGO-promoted all-solid-
                 evolution[J]. Chinese Journal of Catalysis, 2017, 38(12): 1981-1989.     state g-C 3N 4/BiVO 4  Z-scheme heterostructure with enhanced
            [11]  WANG M, GUO  P Y, ZHANG  Y,  et al. Synthesis of hollow   photocatalytic activity toward  the degradation  of antibiotics[J].
                 lantern-like Eu( Ⅲ )-doped g-C 3N 4 with enhanced  visible light   Industrial & Engineering Chemistry Research, 2017, 56(31): 8823-
                 photocatalytic perfomance for organic degradation[J]. Journal of   8832.
                 Hazardous Materials, 2018, 349: 224-233.      [30]  BHARTI B, LI H L, LIU D, et al. Efficient Zr-doped FS-TiO 2/SiO 2
            [12]  ZHANG W J, XU D T, WANG F J, et al. Element-doped graphitic   photocatalyst and its performance in acrylonitrile removal under
                 carbon nitride: Confirmation of doped elements and applications[J].   simulated sunlight[J]. Applied Physics A, 2020, 126(11): 887.
                 Nanoscale Advances, 2021, 3(15): 4370-4387.     [31]  BUI T S, BANSAL P, LEE  B K, et al. Facile fabrication of novel
            [13]  LIU X L, MA R, ZHUANG L, et al. Recent developments of doped   Ba-doped g-C 3N 4 photocatalyst with remarkably enhanced
                 g-C 3N 4 photocatalysts for  the degradation of organic  pollutants[J].   photocatalytic activity towards tetracycline elimination under visible-
                 Critical Reviews in Environmental Science  and  Technology, 2021,   light irradiation[J]. Applied Surface Science, 2020, 506: 144184.
                 51(8): 751-790.                               [32]  PAN H Y, GU J M, HOU K Y, et al. High-efficiency, compressible,
            [14]  WANG Y G, WANG Y Z, LI Y G, et al. Simple synthesis of Zr-doped   and recyclable reduced graphene oxide/chitosan composite aerogels
                 graphitic carbon nitride towards enhanced photocatalytic performance   supported g-C 3N 4/BiOBr photocatalyst for adsorption and degradation
                 under simulated solar light irradiation[J]. Catalysis Communications,   of rhodamine B[J]. Journal of Environmental Chemical Engineering,
                 2015, 72: 24-28.                                  2022, 10(2): 107157.
            [15]  GUO X  L, DUAN J H, WANG W  W,  et al. Modified graphitic   [33]  SHI W N, FANG W X, WANG J C, et al. pH-controlled mechanism
   181   182   183   184   185   186   187   188   189   190   191