Page 187 - 《精细化工》2022年第10期
P. 187

第 10 期                      张仰全,等: Zr 掺杂 g-C 3 N 4 光催化降解有机污染物                           ·2121·


                 of photocatalytic  RhB  degradation over g-C 3N 4 under  sunlight   emerging water pollutants[J]. Materials Chemistry and Physics,
                 irradiation[J]. Photochemical & Photobiological Sciences, 2021,   2020, 253: 123322.
                 20(2): 303-313.                               [41]  JIANG L  B, YUAN X Z, ZENG G  M,  et al. Nitrogen  self-doped
            [34]  SONG X F, TAO  H, CHEN L X,  et al. Synthesis of  Fe/g-C 3N 4   g-C 3N 4  nanosheets with tunable band  structures  for enhanced
                 composites with improved visible light photocatalytic  activity[J].   photocatalytic tetracycline degradation[J]. Journal of Colloid and
                 Materials Letters, 2014, 116: 265-267.            Interface Science, 2019, 536: 17-29.
            [35]  WANG  Y G, LI Y G, BAI X,  et al. Facile synthesis of  Y-doped   [42]  ZHANG L S, JIANG X H, ZHONG Z A,  et al. Carbon nitride
                 graphitic carbon nitride with enhanced photocatalytic performance[J].   supported  high-loading Fe single-atom  catalyst for activation of
                                                                                     1
                 Catalysis Communications, 2016, 84: 179-182.      peroxymonosulfate to generate  O 2 with 100 % selectivity[J]. Angewandte
            [36]  YANG Y Q, JIN H F, ZHANG C, et al. Nitrogen-deficient modified   Chemie International Edition, 2021, 60(40): 21751-21755.
                 P—Cl co-doped graphitic carbon nitride with enhanced photocatalytic   [43] ABRAMOVIĆ B, DESPOTOVIĆ V, ŠOJIĆ D, et al. Mechanism of
                 performance[J]. Journal of Alloys and Compounds, 2020, 821:   clomazone photocatalytic degradation: Hydroxyl radical, electron
                 153439.                                           and hole scavengers[J]. Reaction Kinetics Mechanisms and Catalysis,
            [37]  YU Y Z, CHENG S, WANG L Y, et al. Self-assembly of yolk-shell   2015, 115(1): 67-79.
                 porous Fe-doped g-C 3N 4 microarchitectures with excellent   [44]  SIM L C, TAI J Y, LEONG K H, et al. Metal free and sunlight driven
                 photocatalytic performance under visible light[J]. Sustainable   g-C 3N 4 based photocatalyst using carbon quantum dots from Arabian
                 Materials and Technologies, 2018, 17: e00072.     dates: Green strategy for photodegradation of 2, 4-dichlorophenol
                                                                                     3+
            [38]  WANG  Z T,  XU J L, ZHOU H,  et al. Facile synthesis of   and selective detection of Fe [J]. Diamond and Related  Materials,
                 Zn(Ⅱ)-doped g-C 3N 4  and their enhanced photocatalytic activity   2021, 120: 108679.
                 under visible light irradiation[J]. Rare Metals, 2019, 38(5): 459-467.     [45]  HONG Y Z, JIANG Y H, LI C S, et al. In-situ synthesis of direct
            [39]  JIANG L B,  YUAN X Z,  ZENG G M,  et al. Phosphorus- and   solid-state  Z-scheme V 2O 5/g-C 3N 4 heterojunctions with  enhanced
                 sulfur-codoped g-C 3N 4: Facile preparation, mechanism insight, and   visible light efficiency in photocatalytic degradation of pollutants[J].
                 application as efficient photocatalyst for tetracycline and methyl   Applied Catalysis B: Environmental, 2016, 180: 663-673.
                 orange degradation under visible light irradiation[J]. ACS Sustainable   [46]  NI Z L, DONG F, HUANG H W, et al. New insights into how Pd
                 Chemistry & Engineering, 2017, 5(7): 5831-5841.     nanoparticles influence the photocatalytic oxidation and reduction
            [40]  ZHAO K, KHAN I, QI K Z, et al. Ionic liquid assisted preparation of   ability of g-C 3N 4  nanosheets[J]. Catalysis Science & Technology,
                 phosphorus-doped g-C 3N 4  photocatalyst for decomposition of   2016, 6(16): 6448-6458.


            (上接第 2103 页)                                           the flavor of smoke-tainted wines[J]. Journal of Agricultural and Food
            [2]   DUAN H B (段海波), XIE W C (解万翠), JIANG L (姜黎), et al.   Chemistry, 2014, 62(11): 2327-2336.
                 Application of rhodinol-β-D-glycoside in cigarette flavoring and   [12]  SCHIMIDT R R. New methods for the synthesis of glycosides and
                 slow aroma-releasing[J]. Tobacco Science &  Technology (烟草科  oligosaccharides-Are there alternatives to the Koenigs-Knorr
                 技), 2019, 52(4): 57-64.                           method?[J].  Angewandte Chemie International Edition in English,
            [3]   LI T L, LI T, ZHANG Y Q, et al. Preparation of tea aroma precursor   1986, 25(3): 212-235.
                 glycosides: An efficient and sustainable approach  via chemical   [13]  LEE  Y S,  RHO  E S, MIN Y  K,  et al. Practical  β-stereoselective
                 glycosidation[J]. Journal of Agricultural and Food Chemistry, 2022,   O-glycosylation of phenols with penta-O-acetyl-β-D-glucopyranose[J].
                 70(7): 2320-2327.                                 Journal of Carbohydrate Chemistry, 2001, 20(6): 503-506.
            [4]   LIU J, YIN X F, LI Z T, et al. Facile enzymatic synthesis of diverse   [14]  SINGH Y, DEMCHENKO A V. Koenigs-Knorr glycosylation reaction
                 naturally-occurring  β-D-mannopyranosides catalyzed by glycoside   catalyzed by  trimethylsilyl trifluoromethanesulfonate[J].  Chemistry-A
                 phosphorylases[J]. ACS Catalysis, 2021, 11(5): 2763-2768.   European Journal, 2019, 25(6): 1461-1465.
            [5]   MAICAS S, MATEO J J. Hydrolysis of terpenyl glycosides in grape   [15]  LIANG J (梁娟), WENG W Z (翁伟智), SONG J (宋健). Synthesis
                 juice and other fruit juices: A review[J]. Applied Microbiology and   of (2,3-dimethoxy-6-formyl) phenyl-β-D-glucoside[J]. Fine Chemicals
                 Biotechnology, 2005, 67(3): 322-335.              (精细化工), 2017, 34(5): 596-600.
            [6]  GENG  P  L(耿平兰), HUANG W H (黄卫红), CHENG H P (程化  [16]  ZHANG G H (张改红), BAI B (白冰), YANG J (杨静), et al. Synthesis
                 鹏). Research progress  of  phenols  in baijiu and  their detection   and pyrolysis of 5-methyl furfuryl  alcohol-β-D-glucopyranoside[J].
                 methods[J]. Liquor-Making Science & Technology (酿酒科技),   Fine Chemicals (精细化工), 2019, 36(2): 271-276.
                 2020, 41(8): 83-88.                           [17]  BELYANIN M L, STEPANOVA E V, OGORODNIKOV V D. First
            [7]   VIJAYAKUMAR  G R, DIVAKAR  S. Synthesis of guaiacol-α-D-   total chemical synthesis of natural acyl derivatives of some
                 glucoside and curcumin-bis-α-D-glucoside by an amyloglucosidase   phenolglycosides of the family salicaceae[J]. Carbohydrate Research,
                 from rhizopus[J]. Biotechnology Letters, 2005, 27(18): 1411-1415.   2012, 363(12): 66-72.
            [8]   ZHANG G H (张改红), XU G G (徐改改), BAI B (白冰),  et al.   [18]  KUMAR V, TALISMAN I J, BUKHARI O, et al. Dual role of ionic
                 Facile preparation  of maltol alcohol-β-D-glucopyranoside and its   liquids as phase transfer catalyst and solvent for glycosidation
                 flavoring application[J]. Fine Chemicals (精细化工), 2020, 37(5):   reactions[J]. RSC Advances, 2011, 1(9): 1721-1727.
                 997-1001.                                     [19]  LIU H X (刘红霞), WANG D Y (王大元), LIU H K (刘豪凯), et al.
            [9]   KUMAR T V S, SANKAR K U, DIVAKAR S. Synthesis of thymol   Synthesis of  p-aminophenoxy glycoside compounds[J]. Chemical
                 glycosides under  SCCO 2 conditions  using amyloglucosidase from   Word (化学世界), 2017, 72(1): 43-46.
                 rhizopus mold[J]. Journal  of  Food Science and Technolgy, 2013,   [20]  HUANG Y (黄煜), ZHOU X W (周贤威), FANG L S (房连顺), et
                 50(4): 803-808.                                   al. Catalytic synthesis of alkyl glycosides by HZSM-5 supported
            [10]  DIGNUMA M J  W, HEIJDENB V D R, KERLERC J,  et al.   ionic liquid and its kinetics[J]. Fine Chemicals (精细化工),2021,
                 Identification of  glucosides in  green beans of vanilla planifolia   38(11): 2312-2321.
                 andrews and kinetics of vanilla  β-glucosidase[J]. Food  Chemistry,   [21]  PEI Y H (裴月湖), HUA H  M (华会明), LI Z  L (李占林),  et al.
                 2004, 85(2): 199-205.                             Application of nuclear  magnetic resonance to the determination of
            [11]  MAYR C M, PARKER M, BALDOCK G A, et al. Determination of   the configuration of glycoside bond[J]. Acta Pharmaceutica Sinica
                 the importance of in-mouth release of volatile phenol glycoconjugates to   (药学学报), 2011, 46(2): 127-131.
   182   183   184   185   186   187   188   189   190   191   192