Page 63 - 《精细化工》2022年第10期
P. 63
第 10 期 张克勤,等: 3D 打印气凝胶的研究现状 ·1997·
初,随着气凝胶制备技术的成熟,在美国出现了以 graphene aerogels[J]. Small, 2016, 12(13): 1702-1708.
[17] YAN P, BROWN E, SU Q, et al. 3D printing hierarchical silver
Aspen Aerogel 公司和美国卡博特公司为首的一批气 nanowire aerogel with highly compressive resilience and tensile
凝胶材料生产商,它们的出现推动了全球气凝胶产 elongation through tunable poisson’s ratio[J]. Small, 2017, 13(38):
1701756.
业化进程。至 2004 年,国内也陆续涌现出一批致力
[18] TANG X, ZHU C, CHENG D, et al. Architectured leaf-inspired
于气凝胶材料产业化的企业,产业规模迅速扩张。 Ni 0.33Co 0.66S 2/graphene aerogels via 3D printing for
但是由于传统模板法制备的气凝胶材料的结构单一 high-performance energy storage[J]. Advanced Functional Materials,
2018, 28(51): 1805057.
又难以后加工,因此,其产品形式简单(主要有气凝 [19] GUO F, JIANG Y, XU Z, et al. Highly stretchable carbon aerogels[J].
胶毡、气凝胶板等),应用范围相对狭窄,主要被运用 Nature Communications, 2018, 9(1): 1-9.
[20] QIAN C, LI L, GAO M, et al. All-printed 3D hierarchically structured
在工业保温与石油化工等领域。而 3D 打印气凝胶材 cellulose aerogel based triboelectric nanogenerator for multi-functional
料的出现有望在规避复杂后加工处理的同时一步形成 sensors[J]. Nano Energy, 2019, 63: 103885.
[21] ZHAO S, SIQUEIRA G, DRDOVA S, et al. Additive manufacturing
所需要的气凝胶产品,在实现气凝胶材料的多功能化 of silica aerogels[J]. Nature, 2020, 584(7821): 387-392.
和精细化的应用领域中具有较高的应用潜力。 [22] WANG L, FENG J, LUO Y, et al. Three-dimensional-printed silica
aerogels for thermal insulation by directly writing temperature-
参考文献: induced solidifiable inks[J]. ACS Applied Materials & Interfaces,
2021, 13(34): 40964-40975.
[1] SUN Z, FANG S, HU Y H. 3D Graphene materials: From understanding [23] LI Z M (李仲明), LI B (李斌), WU S R (武思蕊), et al. Research
to design and synthesis control[J]. Chemical Reviews, 2020, 120(18): progress in manufacturing flexible sensors based on 3D printing
10336-10453. technology[J]. Chemical Industry and Engineering Progress (化工进
[2] JUNG S M, JUNG H Y, DRESSELHAUS M S, et al. A facile route 展), 2020, 39(5): 1835-1843.
for 3D aerogels from nanostructured 1D and 2D materials[J]. Scientific [24] DUTY C, AJINJERU C, KISHORE V, et al. What makes a material
Reports, 2012, 2(1): 1-6. printable? A viscoelastic model for extrusion-based 3D printing of
[3] LI C, CHEN Z, DONG W, et al. A review of silicon-based aerogel polymers[J]. Journal of Manufacturing Processes, 2018, 35: 526-537.
thermal insulation materials: Performance optimization through [25] MELCHELS F P, FEIJEN J, GRIJPMA D W. A review on
composition and microstructure[J]. Journal of Non-Crystalline Solids, stereolithography and its applications in biomedical engineering[J].
2021, 553: 120517. Biomaterials, 2010, 31(24): 6121-6130.
[4] ZHAO J, PAN R, SUN R, et al. High-conductivity reduced-graphene- [26] LEE J H, PARK S J. Recent advances in preparations and applications
oxide/copper aerogel for energy storage[J]. Nano Energy, 2019, 60: of carbon aerogels: A review[J]. Carbon, 2020, 163: 1-18.
760-767. [27] JIANG Y, XU Z, HUANG T, et al. Direct 3D printing of ultralight
[5] SHAN C, WANG L, LI Z, et al. Graphene oxide enhanced graphene oxide aerogel microlattices[J]. Advanced Functional
polyacrylamide-alginate aerogels catalysts[J]. Carbohydrate Polymers, Materials, 2018, 28(16): 1707024.
2019, 203: 19-25. [28] PENG M, WEN Z, XIE L, et al. 3D printing of ultralight biomimetic
[6] XU W L(许文龙), WANG S (王晟), BAO Y (包艳), et al. Research hierarchical graphene materials with exceptional stiffness and
progress in preparation and oil absorption properties of resilience[J]. Advanced Materials, 2019, 31(35): 1902930.
graphene-based aerogels[J]. Fine Chemicals (精细化工), 2022, [29] HU L, HE R, LEI H, et al. Carbon aerogel for insulation applications: a
39(3): 433-441,487. review[J]. International Journal of Thermophysics, 2019, 40(4): 1-25.
[7] XIE P (谢璠), GAO K (高坤), ZHUO L H (卓龙海), et al. Preparation [30] CHANDRASEKARAN S, YAO B, LIU T, et al. Direct ink writing of
of RGO/ANFs composite aerogels and their electromagnetic shielding organic and carbon aerogels[J]. Materials Horizons, 2018, 5(6):
performance[J]. Fine Chemicals (精细化工), 2022, 39(4): 697-705. 1166-1175.
[8] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, [31] YUAN S, FAN W, WANG D, et al. 3D printed carbon aerogel
1931, 127(3211): 741. microlattices for customizable supercapacitors with high areal
[9] LIU Q Q (刘青青), ZHANG Q Y (张芩宇), HE J X (贺建雄), et al. capacitance[J]. Journal of Materials Chemistry A, 2021, 9(1):
Preparation of organozirconium polymer aerogels and photocatalytic 423-432.
reduction of CO 2[J]. Fine Chemicals (精细化工), 2021, 38(4): 757- [32] YUE X, XIANG J, CHEN J, et al. High surface area, high catalytic
764. activity titanium dioxide aerogels prepared by solvothermal
[10] ZHENG Q, FANG L, GUO H, et al. Highly porous polymer aerogel crystallization[J]. Journal of Materials Science & Technology, 2020,
film-based triboelectric nanogenerators[J]. Advanced Functional 47: 223-230.
Materials, 2018, 28(13): 1706365. [33] QIAN F, TROKSA A, FEARS T M, et al. Gold aerogel monoliths
[11] LI Y, ZHANG X. Electrically conductive, optically responsive, and with tunable ultralow densities[J]. Nano Letters, 2019, 20(1): 131-135.
highly orientated Ti 3C 2T x MXene aerogel fibers[J]. Advanced Functional [34] HERRMANN A K, FORMANEK P, BORCHARDT L, et al.
Materials, 2022, 32(4): 2107767. Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt,
[12] ZANTO E J, AL-MUHTASEB S A, RITTER J A. Sol-gel-derived and Pd nanoparticles[J]. Chemistry of Materials, 2014, 26(2): 1074-1083.
carbon aerogels and xerogels: Design of experiments approach to [35] QIAN F, LAN P C, FREYMAN M C, et al. Ultralight conductive
materials synthesis[J]. Industrial & Engineering Chemistry Research, silver nanowire aerogels[J]. Nano Letters, 2017, 17(12): 7171-7176.
2002, 41(13): 3151-3162. [36] WANG B, LI G, XU L, et al. Nanoporous boron nitride aerogel film
[13] TETIK H, WANG Y, SUN X, et al. Additive manufacturing of 3D and its smart composite with phase change materials[J]. ACS Nano,
aerogels and porous scaffolds: A review[J]. Advanced Functional 2020, 14(12): 16590-16599.
Materials, 2021, 31(45): 2103410. [37] KONG Y, ZHANG J, ZHAO Z, et al. Monolithic silicon nitride-
[14] FENG J, SU B L, XIA H, et al. Printed aerogels: Chemistry, based aerogels with large specific surface area and low thermal
processing, and applications[J]. Chemical Society Reviews, 2021, conductivity[J]. Ceramics International, 2019, 45(13): 16331-16337.
50(6): 3842-3888. [38] BIAN R, HE G, ZHI W, et al. Ultralight MXene-based aerogels with
[15] ZHU C, HAN T, DUOSS E B, et al. Highly compressible 3D high electromagnetic interference shielding performance[J]. Journal
periodic graphene aerogel microlattices[J]. Nature Communications, of Materials Chemistry C, 2019, 7(3): 474-478.
2015, 6(1): 1-8. [39] FARREL E S, GANONYAN N, COOPERSTEIN I, et al. 3D-printing
[16] ZHANG Q, ZHANG F, MEDARAMETLA S P, et al. 3D printing of of ceramic aerogels by spatial photopolymerization[J]. Applied Materials