Page 63 - 《精细化工》2022年第10期
P. 63

第 10 期                           张克勤,等: 3D 打印气凝胶的研究现状                                   ·1997·


            初,随着气凝胶制备技术的成熟,在美国出现了以                                 graphene aerogels[J]. Small, 2016, 12(13): 1702-1708.
                                                               [17]  YAN P,  BROWN  E, SU Q,  et al. 3D printing hierarchical silver
            Aspen Aerogel 公司和美国卡博特公司为首的一批气                         nanowire aerogel  with highly compressive resilience and tensile
            凝胶材料生产商,它们的出现推动了全球气凝胶产                                 elongation through tunable poisson’s ratio[J]. Small, 2017, 13(38):
                                                                   1701756.
            业化进程。至 2004 年,国内也陆续涌现出一批致力
                                                               [18]  TANG X, ZHU C,  CHENG  D,  et al. Architectured leaf-inspired
            于气凝胶材料产业化的企业,产业规模迅速扩张。                                 Ni 0.33Co 0.66S 2/graphene  aerogels  via  3D  printing  for
            但是由于传统模板法制备的气凝胶材料的结构单一                                 high-performance energy storage[J]. Advanced Functional Materials,
                                                                   2018, 28(51): 1805057.
            又难以后加工,因此,其产品形式简单(主要有气凝                            [19]  GUO F, JIANG Y, XU Z, et al. Highly stretchable carbon aerogels[J].
            胶毡、气凝胶板等),应用范围相对狭窄,主要被运用                               Nature Communications, 2018, 9(1): 1-9.
                                                               [20]  QIAN C, LI L, GAO M, et al. All-printed 3D hierarchically structured
            在工业保温与石油化工等领域。而 3D 打印气凝胶材                              cellulose aerogel based triboelectric nanogenerator for multi-functional
            料的出现有望在规避复杂后加工处理的同时一步形成                                sensors[J]. Nano Energy, 2019, 63: 103885.
                                                               [21]  ZHAO S, SIQUEIRA G, DRDOVA S, et al. Additive manufacturing
            所需要的气凝胶产品,在实现气凝胶材料的多功能化                                of silica aerogels[J]. Nature, 2020, 584(7821): 387-392.
            和精细化的应用领域中具有较高的应用潜力。                               [22]  WANG L, FENG J, LUO Y, et al. Three-dimensional-printed silica
                                                                   aerogels for thermal insulation by directly writing temperature-
            参考文献:                                                  induced solidifiable inks[J]. ACS Applied Materials & Interfaces,
                                                                   2021, 13(34): 40964-40975.
            [1]   SUN Z, FANG S, HU Y H. 3D Graphene materials: From understanding   [23]  LI Z M (李仲明), LI B (李斌), WU S R (武思蕊), et al. Research
                 to design and synthesis control[J]. Chemical Reviews, 2020, 120(18):   progress in manufacturing flexible sensors based on 3D printing
                 10336-10453.                                      technology[J]. Chemical Industry and Engineering Progress (化工进
            [2]   JUNG S M, JUNG H Y, DRESSELHAUS M S, et al. A facile route   展), 2020, 39(5): 1835-1843.
                 for 3D aerogels from nanostructured 1D and 2D materials[J]. Scientific   [24]  DUTY C, AJINJERU C, KISHORE V, et al. What makes a material
                 Reports, 2012, 2(1): 1-6.                         printable? A viscoelastic  model for extrusion-based 3D printing of
            [3]   LI C, CHEN Z, DONG W, et al. A review of silicon-based aerogel   polymers[J]. Journal of Manufacturing Processes, 2018, 35: 526-537.
                 thermal insulation  materials: Performance optimization through   [25]  MELCHELS F P, FEIJEN J,  GRIJPMA D  W. A review on
                 composition and microstructure[J]. Journal of Non-Crystalline Solids,   stereolithography and its applications  in biomedical engineering[J].
                 2021, 553: 120517.                                Biomaterials, 2010, 31(24): 6121-6130.
            [4]   ZHAO J, PAN R, SUN R, et al. High-conductivity reduced-graphene-   [26]  LEE J H, PARK S J. Recent advances in preparations and applications
                 oxide/copper aerogel for energy storage[J]. Nano Energy, 2019, 60:   of carbon aerogels: A review[J]. Carbon, 2020, 163: 1-18.
                 760-767.                                      [27]  JIANG Y, XU Z, HUANG T, et al. Direct 3D printing of ultralight
            [5]   SHAN C, WANG L, LI Z,  et al. Graphene oxide enhanced   graphene oxide aerogel microlattices[J]. Advanced Functional
                 polyacrylamide-alginate aerogels catalysts[J]. Carbohydrate Polymers,   Materials, 2018, 28(16): 1707024.
                 2019, 203: 19-25.                             [28]  PENG M, WEN Z, XIE L, et al. 3D printing of ultralight biomimetic
            [6]  XU W  L(许文龙), WANG S (王晟), BAO Y (包艳), et al. Research   hierarchical graphene  materials with exceptional stiffness and
                 progress in preparation and oil absorption properties of   resilience[J]. Advanced Materials, 2019, 31(35): 1902930.
                 graphene-based aerogels[J]. Fine Chemicals (精细化工), 2022,   [29]  HU L, HE R, LEI H, et al. Carbon aerogel for insulation applications: a
                 39(3): 433-441,487.                               review[J]. International Journal of Thermophysics, 2019, 40(4): 1-25.
            [7]  XIE  P  (谢璠), GAO K (高坤), ZHUO L H (卓龙海), et al. Preparation   [30]  CHANDRASEKARAN S, YAO B, LIU T, et al. Direct ink writing of
                 of RGO/ANFs composite aerogels and their electromagnetic shielding   organic and carbon aerogels[J]. Materials Horizons,  2018, 5(6):
                 performance[J]. Fine Chemicals (精细化工), 2022, 39(4): 697-705.   1166-1175.
            [8]   KISTLER S S.  Coherent expanded aerogels and jellies[J]. Nature,   [31]  YUAN S, FAN W, WANG D,  et al. 3D printed carbon aerogel
                 1931, 127(3211): 741.                             microlattices for  customizable supercapacitors with high areal
            [9]   LIU Q Q (刘青青), ZHANG Q Y (张芩宇), HE J X (贺建雄), et al.   capacitance[J]. Journal of Materials Chemistry A, 2021, 9(1):
                 Preparation of organozirconium polymer aerogels and photocatalytic   423-432.
                 reduction of CO 2[J]. Fine Chemicals (精细化工), 2021, 38(4): 757-   [32]  YUE X, XIANG J, CHEN J, et al. High surface area, high catalytic
                 764.                                              activity titanium dioxide  aerogels prepared by solvothermal
            [10]  ZHENG Q, FANG L, GUO H, et al. Highly porous polymer aerogel   crystallization[J]. Journal of Materials Science & Technology, 2020,
                 film-based triboelectric nanogenerators[J]. Advanced Functional   47: 223-230.
                 Materials, 2018, 28(13): 1706365.             [33]  QIAN F, TROKSA A, FEARS T M, et al. Gold aerogel monoliths
            [11]  LI Y, ZHANG X. Electrically conductive, optically responsive, and   with tunable ultralow densities[J]. Nano Letters, 2019, 20(1): 131-135.
                 highly orientated Ti 3C 2T x MXene aerogel fibers[J]. Advanced Functional   [34]  HERRMANN A  K, FORMANEK  P, BORCHARDT L,  et al.
                 Materials, 2022, 32(4): 2107767.                  Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt,
            [12]  ZANTO  E J, AL-MUHTASEB S A, RITTER J A. Sol-gel-derived   and Pd nanoparticles[J]. Chemistry of Materials, 2014, 26(2): 1074-1083.
                 carbon aerogels and xerogels: Design of experiments approach to   [35]  QIAN F, LAN P C, FREYMAN M  C,  et al. Ultralight conductive
                 materials synthesis[J]. Industrial & Engineering Chemistry Research,   silver nanowire aerogels[J]. Nano Letters, 2017, 17(12): 7171-7176.
                 2002, 41(13): 3151-3162.                      [36]  WANG B, LI G, XU L, et al. Nanoporous boron nitride aerogel film
            [13]  TETIK H, WANG Y, SUN X, et al. Additive manufacturing of 3D   and its smart composite with phase change materials[J]. ACS Nano,
                 aerogels and  porous scaffolds: A review[J]. Advanced Functional   2020, 14(12): 16590-16599.
                 Materials, 2021, 31(45): 2103410.             [37]  KONG Y,  ZHANG J, ZHAO Z,  et al. Monolithic silicon nitride-
            [14]  FENG  J,  SU B L, XIA H,  et al. Printed  aerogels: Chemistry,   based aerogels with large specific surface area and low thermal
                 processing, and applications[J]. Chemical Society Reviews, 2021,   conductivity[J]. Ceramics International, 2019, 45(13): 16331-16337.
                 50(6): 3842-3888.                             [38]  BIAN R, HE G, ZHI W, et al. Ultralight MXene-based aerogels with
            [15]  ZHU C,  HAN T,  DUOSS E B,  et al. Highly compressible 3D   high electromagnetic interference shielding performance[J]. Journal
                 periodic graphene aerogel microlattices[J]. Nature Communications,   of Materials Chemistry C, 2019, 7(3): 474-478.
                 2015, 6(1): 1-8.                              [39]  FARREL E S, GANONYAN N, COOPERSTEIN I, et al. 3D-printing
            [16]  ZHANG Q, ZHANG F, MEDARAMETLA S P, et al. 3D printing of   of ceramic aerogels by spatial photopolymerization[J]. Applied Materials
   58   59   60   61   62   63   64   65   66   67   68