Page 108 - 《精细化工》2022年第11期
P. 108

·2258·                            精细化工   FINE CHEMICALS                                 第 39 卷

            制冷薄膜,结合 PDMS 的高红外发射率和低表面能、                             metafabric for scalable passive daytime radiative cooling[J]. Science,
                                                                   2021, 373(6555): 692-696.
            ZrO 2 的高折射率以及 SiO 2 的粗糙结构和高发射率,
                                                               [10]  ZHANG X S, YANG W F, SHAO Z W, et al. A moisture-wicking
            使用 PDMS/SiO 2 喷涂液对其进行疏水化处理得到表                          passive radiative cooling hierarchical  metafabric[J].  ACS Nano,
                                                                   2022, 16(2): 2188.
            面具有粗糙结构的超疏水辐射制冷 PDMS/ZrO 2/SiO 2
                                                               [11]  ZHOU L, SONG H M, LIANG J W, et al. A polydimethylsiloxane-
            薄膜。当 ZrO 2 粒子粒径为 500 nm、SiO 2 用量为 3.0%
                                                                   coated  metal structure for all-day  radiative cooling[J].  Nature
            时,薄膜的疏水性和辐射制冷性能最好。所制得的                                 Sustainability, 2019, 2: 718.
            薄膜的表面 CA 可达 156°±2°,SA 小于 1°,结合                    [12]  WANG X, LIU X H, LI Z Y, et al. Scalable flexible hybrid membranes
                                                                   with photonic structures for daytime radiative cooling[J]. Advanced
            PDMS/ZrO 2 /SiO 2 薄膜的超疏水性和低黏附性使其
                                                                   Functional Materials, 2019, 30(5): 1907562.
            具有优异的自清洁性。太阳光反射率可达 95.3%,                          [13]  WANG H D, XUE C H, GUO X J, et al. Superhydrophobic porous
            红外发射率大于 90%,具有优异的光学性能。在实                               film for daytime radiative cooling[J]. Applied Materials Today, 2021,
                                                                   24: 101100.
            际户外测试中,可实现最高 12.3 ℃、平均 9.99 ℃的
                                                               [14]  WEI R X (韦任轩), XUE C H (薛朝华). Preparation and properties
            辐射制冷效果。优异的超疏水性使薄膜在不同 pH                                of wear-resistant superhydrophobic films  with porous structure[J].
            溶液浸泡 168 h 后和在紫外灯照持续照射 168 h 后仍                        Fine Chemicals (精细化工), 2021, 38(5): 914-919.
                                                               [15]  LI H G (李回归), XUE C H (薛朝华), JIA S T (贾顺田). Preparation
            具有超疏水性,其平均降温效果与原始薄膜相差不                                 and anti-icing/deicing properties  of carbon black/PDMS photothermal
            大,具有一定的稳定性。PDMS/ZrO 2 /SiO 2 薄膜的超                      superhydrophobic coating[J]. Fine Chemicals (精细化工), 2021,
                                                                   38(5): 934-940.
            疏水性经手指摩擦 30 次和砂纸打磨 5 个摩擦循环后
                                                               [16]  LIAO Z F (廖正芳), ZHANG W (张伟), MENG X Q (孟小琪), et al.
            仍具有超疏水性。其制备方法操作简便,为以后制                                 Preparation of sprayable superhydrophobic material based on tannic
            备具有耐久性的超疏水辐射降温材料提供了思路,                                 acid[J]. Fine Chemicals (精细化工), 2020, 37(5): 893-897.
                                                               [17]  ZHOU  X T, LIU J,  LIU W  D,  et al. Fabrication of stretchable
            有望实现超疏水辐射降温材料的大规模制备。
                                                                   superamphiphobic  surfaces with deformation-induced[J]. Advanced
                                                                   Materials, 2022, 34(10): 2107901.
            参考文献:
                                                               [18]  LI H, LUO Y D, YU F Y, et al. Simple and scalable preparation of
            [1]   JEREMY N M. Tackling climate change through radiative cooling[J].   robust and magnetic superhydrophobic papers by one-step spray-
                 Joule, 2019, 3(9): 2057-2060.                     coating for efficient oil-water separation[J]. Colloids and Surfaces A:
            [2]   DONGWOO C,  MINGEON K, PIL-HOON J,  et al. Spectrally   Physicochemical and Engineering Aspects, 2022, 640: 128449.
                 selective inorganic-based multilayer emitter for daytime radiative   [19]  WANG K, LUO G L, GUO X W, et al. Radiative cooling of commercial
                 cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073-   silicon solar cells using a pyramid-textured PDMS film[J]. Solar
                 8081.                                             Energy, 2021, 225: 245.
            [3]   GRANQVIST C G, HJORTSBERG A. Radiative cooling to low   [20]  GAO K, SHEN H L, LIU Y W,  et al. Random inverted pyramid
                 temperatures: General considerations and application to selectively   textured polydimethylsiloxane radiative cooling emitter for the heat
                 emitting SiO films[J]. Journal of Applied Physics, 1981, 52: 4205.   dissipation of silicon solar cells[J]. Solar Energy, 2022, 236: 703-711.
            [4]   GRANQVIST C G, HJORTSBERG A, ERIKSSON T S. Thin solid   [21]  ZHANG Y B (张玉博). Study on materials and structures based on
                 films radiative cooling to low temperatures with selectivity IR-emitting   radiative cooling coatings in buildings[D]. Yichang: China  Three
                 surfaces[J]. Thin Solid Films, 1982, 90(2): 187-190.   Gorges University (三峡大学), 2021.
            [5]   LIN K  X,  CHAO L,  LEE H H,  et al. Potential building energy   [22]  YANG J N,  GAO X D,  WU  Y  Q,  et al. Nanoporous  silica
                 savings by passive strategies combining daytime radiative coolers   microspheres-ploymethylpentene (TPX) hybrid films toward
                 and thermochromic smart windows[J]. Case Studies in Thermal   effective daytime radiative cooling[J]. Solar Energy Materials and
                 Engineering, 2021, 28: 101517.                    Solar Cells, 2020, 206: 110301.
            [6]   XUE X, QIU M, LI  Y W,  et al. Creating an eco-friendly building   [23]  MA H  C,  YAO K Q, DOU S  L,  et al. Multilayered SiO 2/Si 3N 4
                 coating with smart subambient radiative cooling[J]. Advanced Materials,   photonic emitter to achieve high-performance all-day radiative cooling[J].
                 2020, 32(42): 1906751.                            Solar Energy Materials and Solar Cells, 2020, 212: 110584.
            [7]   XIA T, WANG H. High reflective polyethylene glycol terephthalate   [24]  CUI W H, WANG T, YAN  A L,  et al. Superamphiphobic surfaces
                 package layer for passive daytime radiative cooling in photovoltaic   constructed by cross-linked hollow SiO 2 spheres[J]. Applied Surface
                 cells[J]. Solar Energy, 2022, 237: 313-319.       Science, 2017, 400: 162.
            [8]   WANG Z, KORTGE D, ZHU J, et al. Lightweight, passive radiative   [25]  GAO Q, WU X M, SHI F Y,  et al. Novel superhydrophobic NIR
                 cooling  to  enhance concentrating photovoltaics[J]. Joule, 2020, 4(12):   reflective coatings based on montmorillonite/SiO 2 composites for
                 2702-2717.                                        energy-saving building[J]. Construction and Building  Materials,
            [9]   ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology     2022, 326: 126998.
   103   104   105   106   107   108   109   110   111   112   113