Page 108 - 《精细化工》2022年第11期
P. 108
·2258· 精细化工 FINE CHEMICALS 第 39 卷
制冷薄膜,结合 PDMS 的高红外发射率和低表面能、 metafabric for scalable passive daytime radiative cooling[J]. Science,
2021, 373(6555): 692-696.
ZrO 2 的高折射率以及 SiO 2 的粗糙结构和高发射率,
[10] ZHANG X S, YANG W F, SHAO Z W, et al. A moisture-wicking
使用 PDMS/SiO 2 喷涂液对其进行疏水化处理得到表 passive radiative cooling hierarchical metafabric[J]. ACS Nano,
2022, 16(2): 2188.
面具有粗糙结构的超疏水辐射制冷 PDMS/ZrO 2/SiO 2
[11] ZHOU L, SONG H M, LIANG J W, et al. A polydimethylsiloxane-
薄膜。当 ZrO 2 粒子粒径为 500 nm、SiO 2 用量为 3.0%
coated metal structure for all-day radiative cooling[J]. Nature
时,薄膜的疏水性和辐射制冷性能最好。所制得的 Sustainability, 2019, 2: 718.
薄膜的表面 CA 可达 156°±2°,SA 小于 1°,结合 [12] WANG X, LIU X H, LI Z Y, et al. Scalable flexible hybrid membranes
with photonic structures for daytime radiative cooling[J]. Advanced
PDMS/ZrO 2 /SiO 2 薄膜的超疏水性和低黏附性使其
Functional Materials, 2019, 30(5): 1907562.
具有优异的自清洁性。太阳光反射率可达 95.3%, [13] WANG H D, XUE C H, GUO X J, et al. Superhydrophobic porous
红外发射率大于 90%,具有优异的光学性能。在实 film for daytime radiative cooling[J]. Applied Materials Today, 2021,
24: 101100.
际户外测试中,可实现最高 12.3 ℃、平均 9.99 ℃的
[14] WEI R X (韦任轩), XUE C H (薛朝华). Preparation and properties
辐射制冷效果。优异的超疏水性使薄膜在不同 pH of wear-resistant superhydrophobic films with porous structure[J].
溶液浸泡 168 h 后和在紫外灯照持续照射 168 h 后仍 Fine Chemicals (精细化工), 2021, 38(5): 914-919.
[15] LI H G (李回归), XUE C H (薛朝华), JIA S T (贾顺田). Preparation
具有超疏水性,其平均降温效果与原始薄膜相差不 and anti-icing/deicing properties of carbon black/PDMS photothermal
大,具有一定的稳定性。PDMS/ZrO 2 /SiO 2 薄膜的超 superhydrophobic coating[J]. Fine Chemicals (精细化工), 2021,
38(5): 934-940.
疏水性经手指摩擦 30 次和砂纸打磨 5 个摩擦循环后
[16] LIAO Z F (廖正芳), ZHANG W (张伟), MENG X Q (孟小琪), et al.
仍具有超疏水性。其制备方法操作简便,为以后制 Preparation of sprayable superhydrophobic material based on tannic
备具有耐久性的超疏水辐射降温材料提供了思路, acid[J]. Fine Chemicals (精细化工), 2020, 37(5): 893-897.
[17] ZHOU X T, LIU J, LIU W D, et al. Fabrication of stretchable
有望实现超疏水辐射降温材料的大规模制备。
superamphiphobic surfaces with deformation-induced[J]. Advanced
Materials, 2022, 34(10): 2107901.
参考文献:
[18] LI H, LUO Y D, YU F Y, et al. Simple and scalable preparation of
[1] JEREMY N M. Tackling climate change through radiative cooling[J]. robust and magnetic superhydrophobic papers by one-step spray-
Joule, 2019, 3(9): 2057-2060. coating for efficient oil-water separation[J]. Colloids and Surfaces A:
[2] DONGWOO C, MINGEON K, PIL-HOON J, et al. Spectrally Physicochemical and Engineering Aspects, 2022, 640: 128449.
selective inorganic-based multilayer emitter for daytime radiative [19] WANG K, LUO G L, GUO X W, et al. Radiative cooling of commercial
cooling[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073- silicon solar cells using a pyramid-textured PDMS film[J]. Solar
8081. Energy, 2021, 225: 245.
[3] GRANQVIST C G, HJORTSBERG A. Radiative cooling to low [20] GAO K, SHEN H L, LIU Y W, et al. Random inverted pyramid
temperatures: General considerations and application to selectively textured polydimethylsiloxane radiative cooling emitter for the heat
emitting SiO films[J]. Journal of Applied Physics, 1981, 52: 4205. dissipation of silicon solar cells[J]. Solar Energy, 2022, 236: 703-711.
[4] GRANQVIST C G, HJORTSBERG A, ERIKSSON T S. Thin solid [21] ZHANG Y B (张玉博). Study on materials and structures based on
films radiative cooling to low temperatures with selectivity IR-emitting radiative cooling coatings in buildings[D]. Yichang: China Three
surfaces[J]. Thin Solid Films, 1982, 90(2): 187-190. Gorges University (三峡大学), 2021.
[5] LIN K X, CHAO L, LEE H H, et al. Potential building energy [22] YANG J N, GAO X D, WU Y Q, et al. Nanoporous silica
savings by passive strategies combining daytime radiative coolers microspheres-ploymethylpentene (TPX) hybrid films toward
and thermochromic smart windows[J]. Case Studies in Thermal effective daytime radiative cooling[J]. Solar Energy Materials and
Engineering, 2021, 28: 101517. Solar Cells, 2020, 206: 110301.
[6] XUE X, QIU M, LI Y W, et al. Creating an eco-friendly building [23] MA H C, YAO K Q, DOU S L, et al. Multilayered SiO 2/Si 3N 4
coating with smart subambient radiative cooling[J]. Advanced Materials, photonic emitter to achieve high-performance all-day radiative cooling[J].
2020, 32(42): 1906751. Solar Energy Materials and Solar Cells, 2020, 212: 110584.
[7] XIA T, WANG H. High reflective polyethylene glycol terephthalate [24] CUI W H, WANG T, YAN A L, et al. Superamphiphobic surfaces
package layer for passive daytime radiative cooling in photovoltaic constructed by cross-linked hollow SiO 2 spheres[J]. Applied Surface
cells[J]. Solar Energy, 2022, 237: 313-319. Science, 2017, 400: 162.
[8] WANG Z, KORTGE D, ZHU J, et al. Lightweight, passive radiative [25] GAO Q, WU X M, SHI F Y, et al. Novel superhydrophobic NIR
cooling to enhance concentrating photovoltaics[J]. Joule, 2020, 4(12): reflective coatings based on montmorillonite/SiO 2 composites for
2702-2717. energy-saving building[J]. Construction and Building Materials,
[9] ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology 2022, 326: 126998.