Page 197 - 《精细化工》2022年第11期
P. 197
第 11 期 赵尉伶,等: 表面活性剂改性 Fe 3 O 4 对 As(Ⅴ)和 As(Ⅲ)的吸附 ·2347·
study for the treatment of arsenic, iron, and manganese bearing 程学报), 2012, 6(4): 1251-1256.
ground water using Fe(Ⅲ) impregnated activated carbon: Effects of [29] PAN J J, GUAN B H. Adsorption of nitrobenzene from aqueous
shaking time, pH and temperature[J]. Journal of Hazardous Materials, solution on activated sludge modified by cetyltrimethylammonium
2007, 144(1/2): 420-426. bromide[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 341-346.
[14] KYRIAKOPOULOS G, DOULIA D. Adsorption of pesticides on [30] HU B J, LUO H J. Adsorption of hexavalent chromium onto
carbonaceous and polymeric materials from aqueous solutions: A montmorillonite modified with hydroxyaluminum and
review[J]. Separation and Purification Reviews, 2006, 35(3): 97-191. cetyltrimethylammonium bromide[J]. Applied Surface Science, 2010,
[15] CAI P, ZHENG H, WANG C, et al. Competitive adsorption 257(3): 769-775.
characteristics of fluoride and phosphate on calcined Mg-Al-CO 3 [31] HU J S, ZHONG L S, SONG W G, et al. Synthesis of hierarchically
layered double hydroxides[J]. Journal of Hazardous Materials, 2012, structured metal oxides and their application in heavy metal
213: 100-108. ionremoval[J]. Advanced Materials, 2008, 20: 2977-2982.
[16] TRIPATHY S S, RAICHUR A M. Enhanced adsorption capacity of [32] ZHANG H, YANG D R, JI Y J, et al. Low temperature synthesis of
activated alumina by impregnation with alum for removal of As(Ⅴ) flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-
from water[J]. Chemical Engineering Journal, 2008, 138(1): 179-186. assisted hydrothermal process[J]. The Journal of Physical Chemistry:
[17] KYRIAKOPOULOS G, HOURDAKIS A, DOULIA D. Adsorption B, 2004, 108(13): 3955-3958.
of pesticides on resins[J]. Journal of Environmental Science and [33] YE X C, JIN L H, CAGLAYAN H, et al. Improved size-tunable
Health, Part B, 2003, 38(2): 157-168. synthesis of monodisperse gold nanorods through the use of aromatic
[18] WONG W W, WONG H Y, BADRUZZAMAN A B M, et al. Recent additives[J]. ACS Nano, 2012, 6(3): 2804-2817.
advances in exploitation of nanomaterial for arsenic removal from [34] YANG F Y (杨方源), ZHAO Y L (赵尉伶), SUN Y (孙英), et al.
water: A review[J]. Nanotechnology, 2017, 28(4): 042001. Study on the arsenic removal effect of surfactant-modified magnetic
[19] LATA S, SAMADDER S R. Removal of arsenic from water using nanoparticles[J]. Journal of Xinjiang Agricultural University (新疆农
nano adsorbents and challenges: A review[J]. Journal of Environmental 业大学学报), 2021, 40(3): 188-195.
Management, 2016, 166: 387-406. [35] LIU Z H, YANG X, MAKITA Y, et al. Preparation of a
[20] WANG X Z (王雪兆), QI L H (齐连怀), YANG Q X (杨清香), et al. polycation-intercalated layered manganese oxide nanocomposite by a
Preparation and catalytic properties of Au/Fe 3O 4 nanocomposites[J]. delamination/reassembling process[J]. Chemistry of Materials, 2002,
Fine Chemicals (精细化工), 2013, 30(8): 860-865, 905. 14(11): 4800-4806.
[21] WANG T, ZHANG L Y, WANG H Y, et al. Controllable synthesis of [36] LIU J F, ZHAO Z, JIANG G. Coating Fe 3O 4 magnetic nanoparticles
hierarchical porous Fe 3O 4 particles mediated by poly with humic acid for high efficient removal of heavy metals in
(diallyldimethylammonium chloride) and their application in arsenic water[J]. Environmental Science and Technology, 2008, 42(18): 6949-
removal[J]. ACS Applied Materials and Interfaces, 2013, 5(23): 6954.
12449-12459. [37] HUO J B, XU L, YANG J C E, et al. Magnetic responsive Fe 3O 4-
[22] MAITY D, AGRAWAL D C. Synthesis of iron oxide nanoparticles ZIF-8 core-shell composites for efficient removal of As (Ⅲ) from
under oxidizing environment and their stabilization in aqueous and water[J]. Colloids and Surfaces A, 2018, 539: 59-68.
non-aqueous media[J]. Journal of Magnetism and Magnetic Materials, [38] HUANG J B (黄建滨), HAN F (韩峰). Research progress of new
2006, 308(1): 46-55. surfactants—Bola-type surfactants and Gemini-type surfactants[J].
[23] WANG C H (汪彩虹), CHEN S R (陈硕然), YE C Q (叶常青), et al. University Chemistry (大学化学), 2004, 19(4): 2-11.
Research progress on monodisperse Fe 3O 4 magnetic nanoparticles[J]. [39] CHEN W F (陈维芳), WANG H Y (王宏岩), YU Z (于哲), et al.
Chemical Industry and Engineering Progress (化工进展), 2016, Adsorption of arsenate and arsenite by cationic surfactant-modified
35(S1): 242-247. activated carbon[J]. Acta Scientiae Circumstantiae (环境科学学报),
[24] MULLIGAN C N, YONG R N, GIBBS B F. Surfactant-enhanced 2013, 33(12): 3197-3204.
remediation of contaminated soil: A review[J]. Engineering Geology, [40] JIN Y J, LIU F, TONG M P, et al. Removal of arsenate by
2001, 60(1): 371-380. cetyltrimethylammonium bromide modified magnetic nanoparticles[J].
[25] MULLIGAN C N. Environmental applications for biosurfactants[J]. Journal of Hazardous Materials, 2012, 227: 461-468.
Environment Pollution, 2005, 133(2): 183-198. [41] KOOMSON B, ASIAM E K. Arsenic adsorption by some iron oxide
[26] WEST C C, HARWELL J H. Surfactants and subsurface minerals: Influence of interfacial chemistry[J]. Ghana Mining Journal,
remediation[J]. Enviroment Science and Technology, 1992, 26(12): 2020, 20(2): 43-48.
2324-2330. [42] TIAN Y, YU B B, LI X, et al. Facile solvothermal synthesis of
[27] ZHAO X L, SHI Y L, WANG T H, et al. Preparation of silica- monodisperse Fe 3O 4 nanocrystals with precise size control of one
magnetite nanoparticle mixed hemimicelle sorbents for extraction of nanometre as potential MRI contrast agents[J]. Journal of Materials
several typical phenolic compounds from environmental water Chemistry, 2011, 21(8): 2476-2481.
samples[J]. Journal of Chromatography A, 2008, 1188(2): 140-147. [43] WU K, JING C Y, ZHANG J, et al. Magnetic Fe 3O 4@CuO
[28] HUANG W (黄文), ZHOU M F (周梅芳). SDS coated Fe 3O 4 nanocomposite assembled on graphene oxide sheets for the enhanced
2+
2+
magnetic nanoparticles for adsorption of Cd and Zn in aqueous removal of arsenic (Ⅲ/Ⅴ) from water[J]. Applied Surface Science,
solution[J]. Chinese Journal of Environmental Engineering (环境工 2019, 466: 746-756.