Page 50 - 《精细化工》2022年第12期
P. 50

·2416·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 Preparation and  properties of thermal conductivity enhanced   nanoconvection caused by brownian motion on the enhancement of
                 polyurethane based flexible and form-stable phase change materials   thermal  conductivity in nanofluids[J]. Industrial and Engineering
                 [J]. Fine Chemicals (精细化工), 2022, 39(6):1155-1161, 1189.   Chemistry Research, 2011, 51: 1782-1789.
            [14]  ZHAO Y J, MIN X, HUANG Z H, et al. Honeycomb-like structured   [33]  GARG J, POUDEL B, CHIESA M,  et al. Enhanced thermal
                 biological porous carbon encapsulating PEG: A shape-stable phase   conductivity and viscosity of copper nanoparticles in ethylene glycol
                 change material with enhanced thermal conductivity for thermal   nanofluid[J]. Journal of Applied Physics, 2008, 103(7): 074301.
                 energy storage[J]. Energy and Buildings, 2018, 158: 1049-1062.     [34]  CHOWDHURY P P, SHAIK A H, CHAKRABORTY J. Preparation
            [15]  SUN X Q, CHU Y H, MO Y J, et al. Experimental investigations on   of stable sub 10 nm copper nanopowders redispersible in polar and
                 the heat transfer of melting phase change material (PCM)[J]. Energy   non-polar solvents[J]. Colloids and Surfaces A: Physicochemical and
                 Procedia, 2018, 152: 186-191.                     Engineering Aspects, 2015, 466: 189-196.
            [16]  WANG W T, TANG B T,  JU  B  Z,  et al. Fe 3O 4-functionalized   [35]  BHAGAT M, ANAND R, SHARMA P,  et al. Review—
                 graphene nanosheet embedded phase  change material composites:   Multifunctional copper nanoparticles: Synthesis and applications[J].
                 Efficient magnetic- and sunlight-driven energy conversion and   ECS Journal of Solid State Science and  Technology, 2021, 10(6):
                 storage[J]. Journal of Materials Chemistry A, 2017, 5(3): 958-968.     063011.
            [17]  ZHANG X G,  HUANG Z H,  MA B,  et al. Polyethylene   [36]  TOMOTOSHI D, KAWASAKI H. Surface and interface designs in
                 glycol/Cu/SiO 2  form stable composite phase change  materials:   copper-based conductive inks for printed/flexible electronics[J].
                 Preparation, characterization, and thermal conductivity enhancement   Nanomaterials, 2020, 10(9): 1689.
                 [J]. RSC Advances, 2016, 6(63): 58740-58748.     [37]  MAJI N C, KRISHNA H P,  CHAKRABORTY J.  Low-cost and
            [18]  LIU C Q, CHEN  C,  YU  W,  et al.  Thermal properties of a novel   high-throughput synthesis of copper nanopowder for nanofluid
                 form-stable phase change thermal interface  materials olefin block   applications[J]. Chemical Engineering Journal, 2018, 353: 34-45.
                 copolymer/paraffin filled with Al 2O 3[J]. International  Journal of   [38]  LIU Z L,  TANG  B  T, ZHANG S F. Properties of stable  aqueous
                 Thermal Sciences, 2020, 152: 106293.              nanofluids composed of copper nanoaggregates for enhancing  heat
            [19]  ZHANG Y A, WANG J S, QIU J J,  et al. Ag-graphene/PEG   transfer[J]. Industrial & Engineering Chemistry Research, 2022,
                 composite phase change  materials  for enhancing solar-thermal   61(4): 1596-1605.
                 energy conversion  and storage capacity[J]. Applied Energy, 2019,   [39]  GARG J, POUDEL B, CHIESA M,  et al. Enhanced thermal
                 237: 83-90.                                       conductivity and viscosity of copper nanoparticles in ethylene glycol
            [20]  CHENG F, ZHANG X G,  WEN R L,  et al. Thermal conductivity   nanofluid[J]. Journal of Applied Physics, 2008, 103: 074301.
                 enhancement of form-stable tetradecanol/expanded perlite composite   [40]  DIN M I, REHAN R. Synthesis, characterization, and applications of
                 phase change  materials by adding Cu powder and carbon fiber for   copper nanoparticles[J]. Analytical Letters, 2016, 50: 50-62.
                 thermal energy storage[J]. Applied Thermal Engineering, 2019, 156:   [41]  CHATTERJEE S,  MAJI N C, SHAIK A H, et al. Economical and
                 653-659.                                          high throughput synthesis of copper nanopowder using continuous
            [21]  HAO  Y P (郝玉鹏), LIU  L (刘璐), ZHANG Y A (张宇昂),  et al.   stirred tank and tubular flow reactors[J]. Chemical  Engineering
                 Preparation and properties of electrically driven PEG/EG composite   Journal, 2016, 304: 241-250.
                 phase change materials[J]. Fine Chemicals(精细化工), 2022, 39(3):   [42]  PARVEEN F, SANNAKKI  B, MANDKE M V,  et al. Copper
                 513-518.                                          nanoparticles: Synthesis methods and its light harvesting performance[J].
            [22]  LU  X, ZHENG Y F,  YANG J L,  et al. Multifunctional paraffin   Solar Energy Materials and Solar Cells, 2016, 144: 371-382.
                 wax/carbon  nanotube sponge composites with simultaneous   [43]  ZHENG W R, HU L S, LEE L,  et al. Copper  nanoparticles/
                 high-efficient thermal management and electromagnetic interference   polyaniline/graphene composite as a highly sensitive electrochemical
                 shielding efficiencies for electronic devices[J]. Composites Part B:   glucose sensor[J]. Journal of Electroanalytical Chemistry, 2016, 781:
                 Engineering, 2020, 199: 108308.                   155-160.
            [23] BUONGIORNO J. Convective transport in nanofluids[J]. Journal of   [44]  CHOWDHURY P P, SHAIK A H, CHAKRABORTY J. Preparation
                 Heat Transfer, 2006, 128(3): 240-250.             of stable sub 10 nm copper nanopowders redispersible in polar and
            [24]  AZIZIAN R,  DOROODCHI E, MOGHTADERI B.  Effect of   non-polar solvents[J]. Colloids and Surfaces A: Physicochemical and
                 nanoconvection caused by brownian motion on the enhancement of   Engineering Aspects, 2015, 466: 189-196.
                 thermal  conductivity in nanofluids[J]. Industrial & Engineering   [45]  ATINAFU D, DONG W J, BERARDI U. Phase change  materials
                 Chemistry Research, 2011, 51(4): 1782-1789.       stabilized  by porous metal supramolecular gels: Gelation  effect on
            [25]  CHEBBI R. Thermal conductivity of nanofluids: Effect of Brownian   loading capacity and thermal performance[J]. Chemical Engineering
                 motion of nanoparticles[J]. AIChE Journal, 2015, 61(7): 2368-2369.     Journal, 2020, 394: 124806.
            [26]  REVERBERI A P, SALERNO M, LAUCIELLO S, et al. Synthesis   [46]  CHENG F, ZHANG X G, WEN  R L. Thermal conductivity
                 of copper nanoparticles in ethylene glycol by chemical  reduction   enhancement of form-stable tetradecanol/expanded perlite composite
                 with vanadium (+2) salts[J]. Materials, 2016, 9: 809.     phase change  materials by adding Cu powder and carbon fiber for
            [27]  CAO R  R, WANG Y Z,  CHEN S,  et al. Multiresponsive shape-   thermal energy storage[J]. Applied Thermal Engineering, 2019, 156:
                 stabilized hexadecyl acrylate-grafted graphene as a phase change   653-659.
                 material with enhanced thermal and electrical conductivities[J]. ACS   [47]  XIAO Y Y, BAI  D Y, XIE Z P,  et al. Flexible copper foam-based
                 Applied Materials and Interfaces, 2019, 11(9): 8982-8991.     phase change materials with  good  stiffness-toughness balance,
            [28]  HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and   electro-to-thermal conversion ability and shape memory function for
                 their polymer nanocomposites: A review[J]. Progress in Polymer   intelligent thermal  management[J]. Composite, Part A, 2021, 146:
                 Science, 2011, 36(7): 914-944.                    106420.
            [29]  YU W, XIE H Q,  WANG X P.  Enhanced thermal conductivity of   [48]  WU W H, HUANG X Y, LI K, et al. A functional form-stable phase
                 liquid paraffin based nanofluids containing copper nanoparticles [J].   change composite with high efficiency  electro-to-thermal energy
                 Journal of Dispersion Science and Technology, 2011, 32(7): 948-951.     conversion[J]. Applied Energy, 2017, 190: 474-480.
            [30]  KUMAR A, THAKRE G D, ARYA P K, et al. Influence of operating   [49]  SUN Q R, ZHANG N, ZHANG H Q, et al. Functional phase change
                 parameters  on  the  tribological  performance  of  oleic  composites with highly efficient electrical to thermal energy
                 acid-functionalized Cu nanofluids[J]. Industrial and Engineering   conversion[J]. Renewable Energy, 2020, 145: 2629-2636.
                 Chemistry Research, 2017, 56(13): 3527-3541.     [50]  CHENG F, ZHANG X G,  WEN R L,  et al. Thermal conductivity
            [31]  EASTMAN J, CHOI S, LI S, et al. Anomalously increased effective   enhancement of form-stable tetradecanol/expanded perlite composite
                 thermal conductivities of ethylene glycol-based nanofluids containing   phase change  materials by adding Cu powder and carbon fiber for
                 copper nanoparticles[J]. Applied Physics Letters, 2001, 78: 718-720.     thermal energy storage[J]. Applied Thermal Engineering, 2019, 156:
            [32]  AZIZIAN R,  DOROODCHI E, MOGHTADERI B.  Effect of   653-659.
   45   46   47   48   49   50   51   52   53   54   55