Page 50 - 《精细化工》2022年第12期
P. 50
·2416· 精细化工 FINE CHEMICALS 第 39 卷
Preparation and properties of thermal conductivity enhanced nanoconvection caused by brownian motion on the enhancement of
polyurethane based flexible and form-stable phase change materials thermal conductivity in nanofluids[J]. Industrial and Engineering
[J]. Fine Chemicals (精细化工), 2022, 39(6):1155-1161, 1189. Chemistry Research, 2011, 51: 1782-1789.
[14] ZHAO Y J, MIN X, HUANG Z H, et al. Honeycomb-like structured [33] GARG J, POUDEL B, CHIESA M, et al. Enhanced thermal
biological porous carbon encapsulating PEG: A shape-stable phase conductivity and viscosity of copper nanoparticles in ethylene glycol
change material with enhanced thermal conductivity for thermal nanofluid[J]. Journal of Applied Physics, 2008, 103(7): 074301.
energy storage[J]. Energy and Buildings, 2018, 158: 1049-1062. [34] CHOWDHURY P P, SHAIK A H, CHAKRABORTY J. Preparation
[15] SUN X Q, CHU Y H, MO Y J, et al. Experimental investigations on of stable sub 10 nm copper nanopowders redispersible in polar and
the heat transfer of melting phase change material (PCM)[J]. Energy non-polar solvents[J]. Colloids and Surfaces A: Physicochemical and
Procedia, 2018, 152: 186-191. Engineering Aspects, 2015, 466: 189-196.
[16] WANG W T, TANG B T, JU B Z, et al. Fe 3O 4-functionalized [35] BHAGAT M, ANAND R, SHARMA P, et al. Review—
graphene nanosheet embedded phase change material composites: Multifunctional copper nanoparticles: Synthesis and applications[J].
Efficient magnetic- and sunlight-driven energy conversion and ECS Journal of Solid State Science and Technology, 2021, 10(6):
storage[J]. Journal of Materials Chemistry A, 2017, 5(3): 958-968. 063011.
[17] ZHANG X G, HUANG Z H, MA B, et al. Polyethylene [36] TOMOTOSHI D, KAWASAKI H. Surface and interface designs in
glycol/Cu/SiO 2 form stable composite phase change materials: copper-based conductive inks for printed/flexible electronics[J].
Preparation, characterization, and thermal conductivity enhancement Nanomaterials, 2020, 10(9): 1689.
[J]. RSC Advances, 2016, 6(63): 58740-58748. [37] MAJI N C, KRISHNA H P, CHAKRABORTY J. Low-cost and
[18] LIU C Q, CHEN C, YU W, et al. Thermal properties of a novel high-throughput synthesis of copper nanopowder for nanofluid
form-stable phase change thermal interface materials olefin block applications[J]. Chemical Engineering Journal, 2018, 353: 34-45.
copolymer/paraffin filled with Al 2O 3[J]. International Journal of [38] LIU Z L, TANG B T, ZHANG S F. Properties of stable aqueous
Thermal Sciences, 2020, 152: 106293. nanofluids composed of copper nanoaggregates for enhancing heat
[19] ZHANG Y A, WANG J S, QIU J J, et al. Ag-graphene/PEG transfer[J]. Industrial & Engineering Chemistry Research, 2022,
composite phase change materials for enhancing solar-thermal 61(4): 1596-1605.
energy conversion and storage capacity[J]. Applied Energy, 2019, [39] GARG J, POUDEL B, CHIESA M, et al. Enhanced thermal
237: 83-90. conductivity and viscosity of copper nanoparticles in ethylene glycol
[20] CHENG F, ZHANG X G, WEN R L, et al. Thermal conductivity nanofluid[J]. Journal of Applied Physics, 2008, 103: 074301.
enhancement of form-stable tetradecanol/expanded perlite composite [40] DIN M I, REHAN R. Synthesis, characterization, and applications of
phase change materials by adding Cu powder and carbon fiber for copper nanoparticles[J]. Analytical Letters, 2016, 50: 50-62.
thermal energy storage[J]. Applied Thermal Engineering, 2019, 156: [41] CHATTERJEE S, MAJI N C, SHAIK A H, et al. Economical and
653-659. high throughput synthesis of copper nanopowder using continuous
[21] HAO Y P (郝玉鹏), LIU L (刘璐), ZHANG Y A (张宇昂), et al. stirred tank and tubular flow reactors[J]. Chemical Engineering
Preparation and properties of electrically driven PEG/EG composite Journal, 2016, 304: 241-250.
phase change materials[J]. Fine Chemicals(精细化工), 2022, 39(3): [42] PARVEEN F, SANNAKKI B, MANDKE M V, et al. Copper
513-518. nanoparticles: Synthesis methods and its light harvesting performance[J].
[22] LU X, ZHENG Y F, YANG J L, et al. Multifunctional paraffin Solar Energy Materials and Solar Cells, 2016, 144: 371-382.
wax/carbon nanotube sponge composites with simultaneous [43] ZHENG W R, HU L S, LEE L, et al. Copper nanoparticles/
high-efficient thermal management and electromagnetic interference polyaniline/graphene composite as a highly sensitive electrochemical
shielding efficiencies for electronic devices[J]. Composites Part B: glucose sensor[J]. Journal of Electroanalytical Chemistry, 2016, 781:
Engineering, 2020, 199: 108308. 155-160.
[23] BUONGIORNO J. Convective transport in nanofluids[J]. Journal of [44] CHOWDHURY P P, SHAIK A H, CHAKRABORTY J. Preparation
Heat Transfer, 2006, 128(3): 240-250. of stable sub 10 nm copper nanopowders redispersible in polar and
[24] AZIZIAN R, DOROODCHI E, MOGHTADERI B. Effect of non-polar solvents[J]. Colloids and Surfaces A: Physicochemical and
nanoconvection caused by brownian motion on the enhancement of Engineering Aspects, 2015, 466: 189-196.
thermal conductivity in nanofluids[J]. Industrial & Engineering [45] ATINAFU D, DONG W J, BERARDI U. Phase change materials
Chemistry Research, 2011, 51(4): 1782-1789. stabilized by porous metal supramolecular gels: Gelation effect on
[25] CHEBBI R. Thermal conductivity of nanofluids: Effect of Brownian loading capacity and thermal performance[J]. Chemical Engineering
motion of nanoparticles[J]. AIChE Journal, 2015, 61(7): 2368-2369. Journal, 2020, 394: 124806.
[26] REVERBERI A P, SALERNO M, LAUCIELLO S, et al. Synthesis [46] CHENG F, ZHANG X G, WEN R L. Thermal conductivity
of copper nanoparticles in ethylene glycol by chemical reduction enhancement of form-stable tetradecanol/expanded perlite composite
with vanadium (+2) salts[J]. Materials, 2016, 9: 809. phase change materials by adding Cu powder and carbon fiber for
[27] CAO R R, WANG Y Z, CHEN S, et al. Multiresponsive shape- thermal energy storage[J]. Applied Thermal Engineering, 2019, 156:
stabilized hexadecyl acrylate-grafted graphene as a phase change 653-659.
material with enhanced thermal and electrical conductivities[J]. ACS [47] XIAO Y Y, BAI D Y, XIE Z P, et al. Flexible copper foam-based
Applied Materials and Interfaces, 2019, 11(9): 8982-8991. phase change materials with good stiffness-toughness balance,
[28] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and electro-to-thermal conversion ability and shape memory function for
their polymer nanocomposites: A review[J]. Progress in Polymer intelligent thermal management[J]. Composite, Part A, 2021, 146:
Science, 2011, 36(7): 914-944. 106420.
[29] YU W, XIE H Q, WANG X P. Enhanced thermal conductivity of [48] WU W H, HUANG X Y, LI K, et al. A functional form-stable phase
liquid paraffin based nanofluids containing copper nanoparticles [J]. change composite with high efficiency electro-to-thermal energy
Journal of Dispersion Science and Technology, 2011, 32(7): 948-951. conversion[J]. Applied Energy, 2017, 190: 474-480.
[30] KUMAR A, THAKRE G D, ARYA P K, et al. Influence of operating [49] SUN Q R, ZHANG N, ZHANG H Q, et al. Functional phase change
parameters on the tribological performance of oleic composites with highly efficient electrical to thermal energy
acid-functionalized Cu nanofluids[J]. Industrial and Engineering conversion[J]. Renewable Energy, 2020, 145: 2629-2636.
Chemistry Research, 2017, 56(13): 3527-3541. [50] CHENG F, ZHANG X G, WEN R L, et al. Thermal conductivity
[31] EASTMAN J, CHOI S, LI S, et al. Anomalously increased effective enhancement of form-stable tetradecanol/expanded perlite composite
thermal conductivities of ethylene glycol-based nanofluids containing phase change materials by adding Cu powder and carbon fiber for
copper nanoparticles[J]. Applied Physics Letters, 2001, 78: 718-720. thermal energy storage[J]. Applied Thermal Engineering, 2019, 156:
[32] AZIZIAN R, DOROODCHI E, MOGHTADERI B. Effect of 653-659.