Page 177 - 《精细化工》2022年第2期
P. 177
第 2 期 张 凯,等: 氧化石墨烯生长钨基氧化物酸环境电催化析氢 ·381·
architectures for electrocatalytic hydrogen evolution[J]. Applied
Chemical Industry (应用化工), 2021, 50(1): 189-193.
[4] PEHLIVAN L B, ATAK G, NIKLASSON G A, et al. Electrochromic
solar water splitting using a cathodic WO 3 electrocatalyst[J]. Nano
Energy, 2021, 81(39): 105620.
[5] JIANG X L, JANG H, LIU S G, et al. Heterostructure of
Ru 2P/WO 3/NPC synergistically promotes H 2O dissociation for
improved hydrogen evolution[J]. Angewandte Chemie International
Edition, 2021, 60: 4110-4116.
[6] FENG J Y, HUANG H T, GUO W X, et al. Evaluating the
promotional effects of WO 3 underlayers in BiVO 4 water splitting
photoanodes[J]. Chemical Engineering Journal, 2020, 417: 128095.
[7] LIU X T, WANG C W. In situ wet etching of MoS 2@dWO 3
heterostructure as ultra-stable highly active electrocatalyst for
hydrogen evolution reaction[J]. Catalysts, 2020, 10(9): 977.
图 5 不同催化剂在过电势为 0.10~0.20 V vs. RHE 时,不 [8] CUI X Z, SHI J L, CHEN H R, et al. Platinum/mesoporous WO 3 as a
carbon-free electrocatalyst with enhanced electrochemical activity
同扫描速率(30、40、50、60、70 和 80 mV/s)下 for methanol oxidation[J]. Journal of Physical Chemistry B, 2008,
的 CV 曲线 112(112): 12024-12031.
Fig. 5 CV curves of different catalysts at the overpotentials [9] FAN K, HE M, DHARANIPRAGADA N, et al. Amorphous WO 3
induced lattice distortion for a low-cost and highly-efficient
from 0.10~0.20 V vs. RHE and different scanning electrocatalyst for overall water splitting in acid[J]. Sustainable
speeds (30, 40, 50, 60, 70, 80 mV/s) Energy & Fuels, 2020, 4(4): 1712-1722.
[10] TANG L H, WANG Y, LI Y M, et al. Preparation, structure, and
3 结论 electrochemical properties of reduced graphene sheet films[J].
Advanced Functional Materials, 2009, 19(17): 2782-2789.
[11] LIN W J, LIAO C S, JHANG J H, et al. Graphene modified basal
通过一步水热法制备了到具有纳米异质结结构 and edge plane pyrolytic graphite electrodes for electrocatalytic
oxidation of hydrogen peroxide and β-nicotinamide adenine
的 WO 3 -rGO-CNTs。此催化剂在 0.5 mol/L H 2 SO 4 的 dinucleotide[J]. Electrochemistry Communications, 2009, 11(11):
酸性电解质中表现出优异的 HER 催化活性。WO 3 - 2153-2156.
[12] CAO Y Y, WANG L F, CHEN M Y, et al. W 2N/WC composite
2
rGO-CNT 纳米异质结在电流密度为 10 mA/cm 时, nanofibers as an efficient electrocatalyst for photoelectrochemical
其过电势为 218 mV,Tafel 斜率为 130.5 mV/dec。 hydrogen evolution[J]. RSC Advances, 2021, 11(33): 20285-20291.
[13] TIAN H, CUI X Z, ZENG L M, et al. Oxygen vacancy-assisted
2
在 218 mV 过电势(电流密度为 10 mA/cm )下, hydrogen evolution reaction of the Pt/WO 3 electrocatalyst[J]. Journal
of Materials Chemistry A, 2019, 7(9): 6285-6293.
WO 3 -rGO-CNTs 在酸性电解质中可以保持 50 h 的长
[14] HU W H, HAN G Q, DONG B, et al. Facile synthesis of highly
期稳定性和耐久性。当过电势为–0.5 V vs. RHE 时, dispersed WO 3•H 2O and WO 3 nanoplates for electrocatalytic
hydrogen evolution[J]. Journal of Nanomaterials, 2015, 16(1): 346086.
其阻抗为 8.2 Ω。经过 CV 测试后,计算得到其双层 [15] PARK J, LEE S, KIM H E, et al. Investigation of the support effect
2
电容为 1.20 mF/cm 。WO 3 -rGO-CNTs 经过 1000 次 in atomically dispersed Pt on WO 3–x for utilization of Pt in the
hydrogen evolution reaction[J]. Angewandte Chemie International
LSV 极化曲线扫描后依然保持良好的 HER 催化性 Edition, 2019, 58(45): 16184-16188.
[16] ZHANG K, JIANG P P, NIE Z X, et al. Rational design of
能,表明 WO 3 晶体与单层 GO 和 CNTs 间形成的纳米 MoSe 2-rGO-CNTs flower-like heterostructures for efficient acidic
异质结结构对 HER 催化活性具有较强的协同效应。 hydrogen evolution[J]. Journal of Solid State Electrochemistry, 2021,
25(9): 1825-1834.
本文制备的基于 GO 生长并掺杂 CNTs 的 [17] ZHAO G Q, LI P, RUI K, et al. CoSe 2/MoSe 2 Heterostructures with
WO 3 -rGO-CNTs 催化剂化学结构稳定,不仅具有优 enriched water adsorption/dissociation sites towards enhanced
alkaline hydrogen evolution reaction[J]. Chemistry A European
异的酸环境电催化析氢性能,而且 HER 长期耐久性 Journal, 2018, 24(43): 11158-11165.
也得到极大提升。开拓了钨基氧化物类半导体材料 [18] SOEJIMA T, MARU Y, ITO S. Facile low-temperature synthesis and
photocatalytic activity of graphene oxide/TiO 2 composite[J]. Bulletin
经过化学修饰可成为一类性能优异 HER 催化剂的 of the Chemical Society of Japan, 2013, 86(9): 1065-1070.
[19] CHEN C M, HUANG J Q, ZHANG Q, et al. Annealing a graphene
研究方向。尽管 WO 3 -rGO-CNTs 在酸性介质中具有 oxide film to produce a free standing high conductive graphene
比较优异的 HER 产氢活性,但其在碱性介质和中性 film[J]. Carbon, 2012, 50(2): 659-667.
[20] LO C W, ZHU D F, JIANG H R. An infrared-light responsive
介质中 HER 的催化活性亟待继续探索。此外,如何 graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel
提升钨基氧化物类电催化剂的 HER 性能,使之产氢 nanocomposite[J]. Soft Matter, 2011, 7(12): 5604-5609.
[21] LV S H, MA Y J, QIU C C, et al. Effect of graphene oxide
效益接近商用 20% Pt/C 电极,仍需进一步探索。 nanosheets of microstructure and mechanical properties of cement
composites[J]. Construction and Building Materials, 2013, 49: 121-127.
参考文献: [22] LI Z S, XU S H, SHI Y D, et al. Metal-semiconductor oxide
(WO 3@W) induces an efficient electro-photo synergistic catalysis for
[1] CHU D B (褚道葆). Preparation of nanocrystalline materials by MOR and ORR[J]. Chemical Engineering Journal, 2021, 414:
electrosynthesis method and electrocatalytic synthesis on 128814.
nanocrystalline electrode[J]. Fine Chemicals (精细化工), 2000, [23] CHARTON P, GENGEMBRE L, ARMAND P. TeO 2-WO 3 glasses:
17(S1): 10-12. Infrared, XPS and XANES structural characterizations[J]. Journal of
[2] ROS C, MURCIA-LOPEZ S, GARCIA X, et al. Facing seawater Solid State Chemistry, 2002, 168(1): 175-183.
splitting challenges by regeneration with Ni-Mo-Fe OER/HER [24] CHEN L L, JANG H, KIM M G, et al. Fe, Al-Co-doped NiSe 2
bifunctional electrocatalyst[J]. ChemSusChem, 2021, 14(14): 2872-2881. nanoparticles on reduced graphene oxide as an efficient bifunctional
[3] CAI Q (蔡强), PAN B Y (潘宝宇), SONG X T (宋雪婷), et al. electrocatalyst for overall water splitting[J]. Nanoscale, 2020, 12:
Carbon cloth/transition metal-based hybrids with controllable 13680-13687.