Page 177 - 《精细化工》2022年第2期
P. 177

第 2 期                    张   凯,等:  氧化石墨烯生长钨基氧化物酸环境电催化析氢                                  ·381·


                                                                   architectures for electrocatalytic hydrogen evolution[J]. Applied
                                                                   Chemical Industry (应用化工), 2021, 50(1): 189-193.
                                                               [4]   PEHLIVAN L B, ATAK G, NIKLASSON G A, et al. Electrochromic
                                                                   solar water splitting using a cathodic WO 3 electrocatalyst[J]. Nano
                                                                   Energy, 2021, 81(39): 105620.
                                                               [5]   JIANG X L, JANG H, LIU S G,  et al. Heterostructure of
                                                                   Ru 2P/WO 3/NPC synergistically promotes H 2O dissociation for
                                                                   improved hydrogen evolution[J]. Angewandte Chemie International
                                                                   Edition, 2021, 60: 4110-4116.
                                                               [6]   FENG J  Y,  HUANG H T, GUO  W X,  et al. Evaluating the
                                                                   promotional effects of  WO 3 underlayers in BiVO 4 water  splitting
                                                                   photoanodes[J]. Chemical Engineering Journal, 2020, 417: 128095.
                                                               [7]   LIU X T, WANG C W.  In situ wet etching of MoS 2@dWO 3
                                                                   heterostructure as ultra-stable highly active electrocatalyst for

                                                                   hydrogen evolution reaction[J]. Catalysts, 2020, 10(9): 977.
            图 5   不同催化剂在过电势为 0.10~0.20 V vs. RHE 时,不           [8]   CUI X Z, SHI J L, CHEN H R, et al. Platinum/mesoporous WO 3 as a
                                                                   carbon-free electrocatalyst with enhanced electrochemical activity
                  同扫描速率(30、40、50、60、70 和 80 mV/s)下                 for methanol  oxidation[J]. Journal of  Physical Chemistry B, 2008,
                  的 CV 曲线                                          112(112): 12024-12031.
            Fig. 5    CV curves of different catalysts at the overpotentials   [9]   FAN  K, HE M, DHARANIPRAGADA  N,  et al. Amorphous  WO 3
                                                                   induced lattice distortion for a low-cost and  highly-efficient
                   from 0.10~0.20 V  vs.  RHE and different  scanning   electrocatalyst for overall water splitting in acid[J]. Sustainable
                   speeds (30, 40, 50, 60, 70, 80 mV/s)            Energy & Fuels, 2020, 4(4): 1712-1722.
                                                               [10]  TANG  L H, WANG  Y,  LI Y M,  et al. Preparation, structure, and
            3    结论                                                electrochemical properties  of  reduced graphene sheet films[J].
                                                                   Advanced Functional Materials, 2009, 19(17): 2782-2789.
                                                               [11]  LIN W J, LIAO C S, JHANG J H, et al. Graphene modified basal
                 通过一步水热法制备了到具有纳米异质结结构                              and edge plane pyrolytic graphite electrodes for electrocatalytic
                                                                   oxidation of hydrogen  peroxide and  β-nicotinamide adenine
            的 WO 3 -rGO-CNTs。此催化剂在 0.5 mol/L H 2 SO 4 的            dinucleotide[J]. Electrochemistry Communications, 2009, 11(11):
            酸性电解质中表现出优异的 HER 催化活性。WO 3 -                           2153-2156.
                                                               [12]  CAO  Y Y, WANG L F, CHEN M  Y,  et al. W 2N/WC composite
                                                      2
            rGO-CNT 纳米异质结在电流密度为 10 mA/cm 时,                        nanofibers as an efficient electrocatalyst for photoelectrochemical
            其过电势为 218 mV,Tafel 斜率为 130.5 mV/dec。                   hydrogen evolution[J]. RSC Advances, 2021, 11(33): 20285-20291.
                                                               [13]  TIAN H, CUI X  Z, ZENG  L M,  et al. Oxygen vacancy-assisted
                                                   2
            在 218 mV 过电势(电流密度为 10 mA/cm )下,                        hydrogen evolution reaction of the Pt/WO 3 electrocatalyst[J]. Journal
                                                                   of Materials Chemistry A, 2019, 7(9): 6285-6293.
            WO 3 -rGO-CNTs 在酸性电解质中可以保持 50 h 的长
                                                               [14]  HU W H, HAN G Q,  DONG B,  et al. Facile synthesis of highly
            期稳定性和耐久性。当过电势为–0.5 V vs. RHE 时,                        dispersed WO 3•H 2O and  WO 3 nanoplates for electrocatalytic
                                                                   hydrogen evolution[J]. Journal of Nanomaterials, 2015, 16(1): 346086.
            其阻抗为 8.2 Ω。经过 CV 测试后,计算得到其双层                       [15]  PARK J, LEE S, KIM H E, et al. Investigation of the support effect
                              2
            电容为 1.20 mF/cm 。WO 3 -rGO-CNTs 经过 1000 次               in atomically dispersed Pt on WO 3–x for utilization  of  Pt in the
                                                                   hydrogen evolution reaction[J]. Angewandte Chemie International
            LSV 极化曲线扫描后依然保持良好的 HER 催化性                             Edition, 2019, 58(45): 16184-16188.
                                                               [16]  ZHANG K, JIANG P P, NIE Z X,  et al. Rational design of
            能,表明 WO 3 晶体与单层 GO 和 CNTs 间形成的纳米                       MoSe 2-rGO-CNTs  flower-like heterostructures for efficient acidic
            异质结结构对 HER 催化活性具有较强的协同效应。                              hydrogen evolution[J]. Journal of Solid State Electrochemistry, 2021,
                                                                   25(9): 1825-1834.
                 本文制备的基于 GO 生长并掺杂 CNTs 的                       [17]  ZHAO G Q, LI P, RUI K, et al. CoSe 2/MoSe 2 Heterostructures with
            WO 3 -rGO-CNTs 催化剂化学结构稳定,不仅具有优                         enriched water adsorption/dissociation sites towards enhanced
                                                                   alkaline hydrogen evolution reaction[J]. Chemistry A European
            异的酸环境电催化析氢性能,而且 HER 长期耐久性                              Journal, 2018, 24(43): 11158-11165.
            也得到极大提升。开拓了钨基氧化物类半导体材料                             [18]  SOEJIMA T, MARU Y, ITO S. Facile low-temperature synthesis and
                                                                   photocatalytic activity of graphene oxide/TiO 2 composite[J]. Bulletin
            经过化学修饰可成为一类性能优异 HER 催化剂的                               of the Chemical Society of Japan, 2013, 86(9): 1065-1070.
                                                               [19]  CHEN C M, HUANG J Q, ZHANG Q, et al. Annealing a graphene
            研究方向。尽管 WO 3 -rGO-CNTs 在酸性介质中具有                        oxide film to  produce a free standing high conductive graphene
            比较优异的 HER 产氢活性,但其在碱性介质和中性                              film[J]. Carbon, 2012, 50(2): 659-667.
                                                               [20]  LO  C  W, ZHU D F, JIANG H R.  An infrared-light responsive
            介质中 HER 的催化活性亟待继续探索。此外,如何                              graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel
            提升钨基氧化物类电催化剂的 HER 性能,使之产氢                              nanocomposite[J]. Soft Matter, 2011, 7(12): 5604-5609.
                                                               [21]  LV S H, MA  Y  J, QIU  C  C,  et al. Effect of graphene oxide
            效益接近商用 20% Pt/C 电极,仍需进一步探索。                            nanosheets of microstructure and mechanical properties  of cement
                                                                   composites[J]. Construction and Building Materials, 2013, 49: 121-127.
            参考文献:                                              [22]  LI Z S, XU S H, SHI Y D,  et al. Metal-semiconductor oxide
                                                                   (WO 3@W) induces an efficient electro-photo synergistic catalysis for
            [1]   CHU  D B (褚道葆). Preparation of nanocrystalline materials by   MOR  and ORR[J].  Chemical  Engineering Journal, 2021, 414:
                 electrosynthesis  method  and  electrocatalytic  synthesis  on  128814.
                 nanocrystalline electrode[J]. Fine Chemicals (精细化工), 2000,   [23]  CHARTON P, GENGEMBRE  L, ARMAND P.  TeO 2-WO 3 glasses:
                 17(S1): 10-12.                                    Infrared, XPS and XANES structural characterizations[J]. Journal of
            [2]   ROS C, MURCIA-LOPEZ S, GARCIA X,  et al. Facing seawater   Solid State Chemistry, 2002, 168(1): 175-183.
                 splitting challenges by regeneration with Ni-Mo-Fe OER/HER   [24]  CHEN  L L, JANG H, KIM M G,  et al. Fe,  Al-Co-doped NiSe 2
                 bifunctional electrocatalyst[J]. ChemSusChem, 2021, 14(14): 2872-2881.     nanoparticles on reduced graphene oxide as an efficient bifunctional
            [3]   CAI Q (蔡强), PAN B  Y (潘宝宇), SONG X T (宋雪婷),  et al.   electrocatalyst for  overall water splitting[J]. Nanoscale,  2020, 12:
                 Carbon cloth/transition metal-based hybrids with controllable   13680-13687.
   172   173   174   175   176   177   178   179   180   181   182