Page 30 - 《精细化工》2022年第2期
P. 30
·234· 精细化工 FINE CHEMICALS 第 39 卷
电池中的性能。由于金属镁负极界面钝化的特殊性, magnesium batteries[J]. ACS Applied Energy Materials, 2019, 2(11):
7980-7990.
需设计出具有稳定性和支持镁金属可逆沉积/溶解 [9] WU Q J, SHU K W, SUN L L, et al. Recent advances in
的新型镁离子聚合物固态电解质或在镁金属负极表 non-nucleophilic Mg electrolytes[J]. Frontiers in Materials, 2021, 7:
612134.
2+
[16]
面构筑一层可传输 Mg 的人工 SEI 。 [10] MATSUI M. Study on electrochemically deposited Mg metal[J].
Journal of Power Sources, 2011, 196(16): 7048-7055.
5 结束语与展望 [11] YOO H D, SHTERENBERG I, GOFER Y, et al. Mg rechargeable
batteries: An on-going challenge[J]. Energy & Environmental
Science, 2013, 6(8): 2265-2279.
中国镁资源丰富,约占全球镁储量的 22.5%。 [12] NOVAK P, IMHOF R, HAAS O. Magnesium insertion electrodes for
镁离子电池具有高比容量、低成本、安全、环境友 rechargeable nonaqueous batteries—A competitive alternative to
lithium?[J]. Electrochimica Acta, 1999, 45(1/2): 351-367.
好等特点,不仅适用于大规模储能系统,在柔性储 [13] SA N, PAN B, SAHA-SHAH A, et al. Role of chloride for a simple,
能领域也展示出巨大的应用前景。因此,开发镁离 non-grignard Mg electrolyte in ether-based solvents[J]. ACS Applied
Materials & Interfaces, 2016, 8(25): 16002-16008.
子电池符合中国绿色可持续发展战略。目前,镁离
[14] AURBACH D, GOFER Y, SCHECHTER A, et al. A comparison
子电池尚未实现商业化。液态电解质虽然离子导电 between the electrochemical behavior of reversible magnesium and
lithium electrodes[J]. Journal of Power Sources, 2001, 97/98:
率高,但镁金属在电解液中容易发生钝化的特性以
269-273.
及存在的安全隐患阻碍了其实际应用。高性能固态 [15] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion
batteries with high energy densities[J]. Nature Reviews Materials,
电解质的研发是使镁离子电池最大程度地接近其理
2016, 1(4): 16013.
论容量,最终走向实用化的有效途径之一。 [16] PARK B, SCHAEFER J L. Review-polymer electrolytes for
magnesium batteries: Forging away from analogs of lithium polymer
本文主要总结了近年来国内外镁离子电池中聚
electrolytes and towards the rechargeable magnesium metal polymer
合物基纯固态电解质、凝胶电解质、复合电解质的 battery[J]. Journal of the Electrochemical Society, 2020, 167:
离子电导率、对解决镁金属负极钝化的贡献及作为 070545.
[17] JASCHIN P W, GAO Y, LI Y, et al. A materials perspective on
镁离子电池电解质材料应用的研究进展。目前,聚 magnesium-ion-based solid-state electrolytes[J]. Journal of Materials
合物基镁离子固态电解质的离子电导率已满足商业 Chemistry A, 2020, 8(6): 2875-2897.
[18] DEIVANAYAGAM R, INGRAM B J, SHAHBAZIAN-YASSAR R.
化需求,然而与负极镁的相容性还有待提升。研究 Progress in development of electrolytes for magnesium batteries[J].
人员应继续开发能够实现镁的可逆沉积/溶解而不 Energy Storage Materials, 2019, 21: 136-153.
[19] YANG J, WANG X, ZHANG G, et al. High-performance solid
腐蚀集流体的聚合物电解质材料,并对镁金属负极 composite polymer electrolyte for all solid-state lithium battery
进行优化改性,尽可能地减少或消除钝化层,促进 through facile microstructure regulation[J]. Frontiers in Chemistry,
2019, 7: 388.
2+
Mg 快速传输。总之,要实现二次镁离子电池用固 [20] LIEBENOW C. A novel type of magnesium ion conducting polymer
态电解质的商业化发展仍需时日。 electrolyte[J]. Electrochimica Acta, 1998, 43 (10/11): 1253-1256.
[21] LIEBENOW C, MANTEY S. Preparation of solutions of
amidomagnesium chlorides in poly(ethylene oxide) and their
参考文献: characterization by conductivity measurements[J]. Journal of Solid
[1] GAO D R (高懂儒), ZHAO Y (赵鹬), LI N (李宁), et al. Recent State Electrochemistry, 2003, 7(5): 313-316.
progress of nickel vanadate anode materials for lithium-ion [22] CHUSID O, GOFER Y, GIZBAR H, et al. Solid-state rechargeable
batteries[J]. Fine Chemicals (精细化工), 2020, 37(3): 446-451. magnesium battery[J]. Advanced Materials, 2003, 15(7/8): 627-630.
[2] ZHANG H X (张华旭), HENRY (亨瑞), LIU H (刘昊), et al. [23] MORITA M, YOSHIMOTO N, YAKUSHIJI S, et al. Rechargeable
Research progress in energy storage characteristics and mechanism magnesium batteries using a novel polymeric solid electrolyte[J].
of manganese dioxide as cathode materials for aqueous zinc-ion Electrochemical and Solid-State Letters, 2001, 4(11): A177- A179.
batteries[J]. Fine Chemicals (精细化工), 2021, 38(3): 464-473. [24] YOSHIMOTO N, YAKUSHIJI S, ISHIKAWA M, et al.
[3] GAO Z H, SUN H B, YE F L, et al. Promises, challenges, and recent Rechargeable magnesium batteries with polymeric gel electrolytes
progress of inorganic solid-state electrolytes for all-solid-state containing magnesium salts[J]. Electrochimica Acta, 2003,
lithium batteries[J]. Advanced Materials, 2018, 30(17): 1705702. 48(14/15/16): 2317-2322.
[4] LIU T F, ZHANG Y P, JIANG Z G, et al. Exploring competitive [25] KUMAR G G, MUNICHANDRAIAH N. A gel polymer electrolyte
of magnesium triflat[J]. Solid State Ionics, 2000, 128: 203-210.
features of stationary sodium ion batteries for electrochemical energy [26] MANJULADEVI R, THAMILSELVAN M, SELVASEKARAPANDIAN
storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533. S, et al. Mg-ion conducting blend polymer electrolyte based on
[5] FANG Z (方铮), CAO Y L (曹余良), HU Y S (胡勇胜), et al. poly(vinyl alcohol)-poly(acrylonitrile) with magnesium perchlorate[J].
Economic analysis for room-temperature sodium-ion battery Solid State Ionics, 2017, 308: 90-100.
technologies[J]. Energy Storage Science and Technology (储能科学 [27] IKEDA S, MORI Y, FURUHASHI Y, et al. Quasi-solid polymer
与技术), 2016, 5(2): 149-158. electrolytes using photo-cross-linked polymers. Lithium and divalent
[6] RONG X H (容晓晖), LU Y X (陆雅翔), QI X G (戚兴国), et al. cation conductors and their applications[J]. Journal of Power
Na-ion batteries: From fundamental research to engineering Sources, 1999, 81/82: 720-723.
exploration[J]. Energy Storage Science and Technology (储能科学与 [28] SAITO M, IKUTA H, UCHIMOTO Y, et al. Influence of PEG-borate
技术), 2020, 9(2): 515-522. ester as a Lewis acid on ionic conductivity of polymer electrolyte
[7] FENG X N, RENG D D, HE X M, et al. Mitigating thermal runaway containing Mg-salt[J]. Journal of the Electrochemical Society, 2003,
of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. 150(4): A477-A483.
[8] DEIVANAYAGAM R, CHENG M, WANG M, et al. A composite [29] SAITO M, IKUTA H, UCHIMOTO Y, et al. Interaction between the
polymer electrolyte for highly cyclable room-temperature solid-state Lewis acid group of a borate ester and various anion species in a