Page 30 - 《精细化工》2022年第2期
P. 30

·234·                             精细化工   FINE CHEMICALS                                 第 39 卷

            电池中的性能。由于金属镁负极界面钝化的特殊性,                                magnesium batteries[J]. ACS Applied Energy Materials, 2019, 2(11):
                                                                   7980-7990.
            需设计出具有稳定性和支持镁金属可逆沉积/溶解                             [9]   WU Q J, SHU  K W, SUN  L L,  et al. Recent advances in
            的新型镁离子聚合物固态电解质或在镁金属负极表                                 non-nucleophilic Mg electrolytes[J]. Frontiers in Materials, 2021, 7:
                                                                   612134.
                                2+
                                            [16]
            面构筑一层可传输 Mg 的人工 SEI               。                [10]  MATSUI M. Study on electrochemically deposited Mg metal[J].
                                                                   Journal of Power Sources, 2011, 196(16): 7048-7055.
            5   结束语与展望                                         [11]  YOO H D, SHTERENBERG I, GOFER Y, et al. Mg rechargeable
                                                                   batteries: An on-going challenge[J]. Energy  &  Environmental
                                                                   Science, 2013, 6(8): 2265-2279.
                 中国镁资源丰富,约占全球镁储量的 22.5%。                       [12]  NOVAK P, IMHOF R, HAAS O. Magnesium insertion electrodes for
            镁离子电池具有高比容量、低成本、安全、环境友                                 rechargeable nonaqueous  batteries—A competitive alternative to
                                                                   lithium?[J]. Electrochimica Acta, 1999, 45(1/2): 351-367.
            好等特点,不仅适用于大规模储能系统,在柔性储                             [13]  SA N, PAN B, SAHA-SHAH A, et al. Role of chloride for a simple,
            能领域也展示出巨大的应用前景。因此,开发镁离                                 non-grignard Mg electrolyte in ether-based solvents[J]. ACS Applied
                                                                   Materials & Interfaces, 2016, 8(25): 16002-16008.
            子电池符合中国绿色可持续发展战略。目前,镁离
                                                               [14]  AURBACH  D, GOFER Y, SCHECHTER  A,  et al. A comparison
            子电池尚未实现商业化。液态电解质虽然离子导电                                 between the electrochemical behavior of reversible magnesium and
                                                                   lithium electrodes[J]. Journal of Power Sources, 2001, 97/98:
            率高,但镁金属在电解液中容易发生钝化的特性以
                                                                   269-273.
            及存在的安全隐患阻碍了其实际应用。高性能固态                             [15]  CHOI J W, AURBACH D. Promise and reality of post-lithium-ion
                                                                   batteries with high energy densities[J].  Nature Reviews  Materials,
            电解质的研发是使镁离子电池最大程度地接近其理
                                                                   2016, 1(4): 16013.
            论容量,最终走向实用化的有效途径之一。                                [16]  PARK B, SCHAEFER J L. Review-polymer  electrolytes for
                                                                   magnesium batteries: Forging away from analogs of lithium polymer
                 本文主要总结了近年来国内外镁离子电池中聚
                                                                   electrolytes and towards the rechargeable magnesium metal polymer
            合物基纯固态电解质、凝胶电解质、复合电解质的                                 battery[J]. Journal of the Electrochemical Society, 2020, 167:
            离子电导率、对解决镁金属负极钝化的贡献及作为                                 070545.
                                                               [17]  JASCHIN P W, GAO Y, LI  Y,  et al. A  materials perspective on
            镁离子电池电解质材料应用的研究进展。目前,聚                                 magnesium-ion-based solid-state electrolytes[J]. Journal of Materials
            合物基镁离子固态电解质的离子电导率已满足商业                                 Chemistry A, 2020, 8(6): 2875-2897.
                                                               [18]  DEIVANAYAGAM R, INGRAM B J, SHAHBAZIAN-YASSAR R.
            化需求,然而与负极镁的相容性还有待提升。研究                                 Progress in development of electrolytes for magnesium batteries[J].
            人员应继续开发能够实现镁的可逆沉积/溶解而不                                 Energy Storage Materials, 2019, 21: 136-153.
                                                               [19]  YANG  J, WANG X, ZHANG G,  et al. High-performance solid
            腐蚀集流体的聚合物电解质材料,并对镁金属负极                                 composite polymer electrolyte for all solid-state lithium battery
            进行优化改性,尽可能地减少或消除钝化层,促进                                 through facile microstructure regulation[J]. Frontiers in Chemistry,
                                                                   2019, 7: 388.
               2+
            Mg 快速传输。总之,要实现二次镁离子电池用固                            [20]  LIEBENOW C. A novel type of magnesium ion conducting polymer
            态电解质的商业化发展仍需时日。                                        electrolyte[J]. Electrochimica Acta, 1998, 43 (10/11): 1253-1256.
                                                               [21]  LIEBENOW C,  MANTEY S. Preparation of solutions of
                                                                   amidomagnesium  chlorides in poly(ethylene oxide)  and their
            参考文献:                                                  characterization by conductivity measurements[J]. Journal of Solid
            [1]   GAO D R  (高懂儒), ZHAO  Y (赵鹬), LI  N (李宁),  et al. Recent   State Electrochemistry, 2003, 7(5): 313-316.
                 progress of nickel vanadate  anode  materials for lithium-ion   [22]  CHUSID O, GOFER Y, GIZBAR H, et al. Solid-state rechargeable
                 batteries[J]. Fine Chemicals (精细化工), 2020, 37(3): 446-451.     magnesium battery[J]. Advanced Materials, 2003, 15(7/8): 627-630.
            [2]   ZHANG  H X (张华旭), HENRY (亨瑞), LIU H (刘昊),  et al.   [23]  MORITA M, YOSHIMOTO N, YAKUSHIJI S, et al. Rechargeable
                 Research progress in energy storage characteristics and mechanism   magnesium batteries using a novel polymeric solid electrolyte[J].
                 of manganese dioxide as cathode materials for aqueous zinc-ion   Electrochemical and Solid-State Letters, 2001, 4(11): A177- A179.
                 batteries[J]. Fine Chemicals (精细化工), 2021, 38(3): 464-473.     [24]  YOSHIMOTO N, YAKUSHIJI S, ISHIKAWA M,  et al.
            [3]   GAO Z H, SUN H B, YE F L, et al. Promises, challenges, and recent   Rechargeable  magnesium batteries with polymeric gel electrolytes
                 progress of  inorganic solid-state electrolytes for all-solid-state   containing magnesium salts[J]. Electrochimica  Acta, 2003,
                 lithium batteries[J]. Advanced Materials, 2018, 30(17): 1705702.     48(14/15/16): 2317-2322.
            [4]   LIU T F,  ZHANG Y P, JIANG  Z G,  et al. Exploring competitive   [25]  KUMAR G G, MUNICHANDRAIAH N. A gel polymer electrolyte
                                                                   of magnesium triflat[J]. Solid State Ionics, 2000, 128: 203-210.
                 features of stationary sodium ion batteries for electrochemical energy   [26]  MANJULADEVI R, THAMILSELVAN M, SELVASEKARAPANDIAN
                 storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533.     S,  et al. Mg-ion conducting blend polymer electrolyte  based on
            [5]   FANG Z (方铮), CAO Y L (曹余良), HU Y S (胡勇胜),  et al.   poly(vinyl alcohol)-poly(acrylonitrile) with magnesium perchlorate[J].
                 Economic analysis for room-temperature sodium-ion battery   Solid State Ionics, 2017, 308: 90-100.
                 technologies[J]. Energy Storage Science and Technology (储能科学  [27]  IKEDA S, MORI  Y, FURUHASHI Y,  et al. Quasi-solid polymer
                 与技术), 2016, 5(2): 149-158.                        electrolytes using photo-cross-linked polymers. Lithium and divalent
            [6]   RONG X H (容晓晖), LU Y X (陆雅翔), QI X G (戚兴国), et al.   cation conductors and their applications[J]. Journal  of Power
                 Na-ion batteries: From fundamental research to engineering   Sources, 1999, 81/82: 720-723.
                 exploration[J]. Energy Storage Science and Technology (储能科学与  [28]  SAITO M, IKUTA H, UCHIMOTO Y, et al. Influence of PEG-borate
                 技术), 2020, 9(2): 515-522.                         ester as a Lewis acid on ionic conductivity of  polymer  electrolyte
            [7]   FENG X N, RENG D D, HE X M, et al. Mitigating thermal runaway   containing Mg-salt[J]. Journal of the Electrochemical Society, 2003,
                 of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.     150(4): A477-A483.
            [8]   DEIVANAYAGAM R, CHENG M, WANG M,  et al. A composite   [29]  SAITO M, IKUTA H, UCHIMOTO Y, et al. Interaction between the
                 polymer electrolyte for highly cyclable room-temperature solid-state   Lewis acid group  of a borate ester and various anion  species in a
   25   26   27   28   29   30   31   32   33   34   35