Page 71 - 《精细化工》2022年第2期
P. 71

第 2 期                    陈泽宇,等:  表面活性剂分散多壁碳纳米管机理及性能评价                                    ·275·


            2.4.3  OP-10 吸附与分散机理                               比于 SDS 与 HT A-103,通过更高的表面电势、更长
                 OP-10 分子结构如下所示,包含了疏水烷基链、                      的分子链以及在 MWCNTs 表面更强的吸附能力获
            苯环和亲水 EO 长链(—OCH 2 CH 2 —)。                        得了较好的分散效果。

                                                               参考文献:
                                                               [1]   WANG S H ( 王少 辉 ). Chemical  functionalization of carbon
                                                                   nanotubes and the properties  of  their waterborne polyurethane

                                                                   composites[D]. Taiyuan: Taiyuan University of Technology (太原理
                                                                   工大学), 2019.
                 其中,辛烷基在疏水作用和范德华力作用下与                          [2]   ZHANG M M (张萌萌), JIA G Y (贾广跃), XIONG L P (熊丽萍), et
            MWCNTs 相互吸引,苯环则通过 π-π 堆积作用垂直                           al. Progress  on  thermal conductivity models of carbon nanotube
                                                                   polymer composites[J]. Fine Chemicals (精细化工), 2020, 37(6):
            吸附至 MWCNTs 表面上,二者共同作用下提高了吸
                                                                   1081-1087, 1106.
            附能力使得更多的 OP-10 分子牢固地包裹在 MWCNTs                     [3]   GONG H J (宫厚健). Aggregation behaviors of differently structured
            表面上,如图 10 所示,EO 链在液相中良好的空间                             block  polyethers and the  dispersing ability of single-walled carbon
                                                                   nanotubes[D]. Ji'nan: Shandong University (山东大学), 2011.
            位阻作用克服 MWCNTs 之间的吸附团聚,保证了分                         [4]   ZHANG Y (张燕). Dispersion and assembly of single-walled carbon
            散体系的稳定性。                                               nanotubes in surfactant association system[D]. Ji'nan:  Shandong
                                                                   University (山东大学), 2016.
                                                               [5]   SUN X Y (孙晓妍), WANG H F (王换方), LI D P (李东鹏). Research
                                                                   progress  of the dispersion of carbon nanotubes[J]. Guangdong
                                                                   Chemical Industry (广东化工), 2017, 44(14): 160-161.
                                                               [6]   BU L X (卜路霞), LI J J (李京京), GAO L L (高琳琳),  et al.
                                                                   Dispersion of multi-walled carbon nanotubes in solution dispersion
                                                                   of multi-walled carbon nanotubes in solution with surfactant SDBS
                                                                   [J]. Plating and Finishing (电镀与精饰), 2019, 41(7): 10-13.
                                                               [7]   YANG C X (杨春霞), ZHAO W B (赵文彬). Surface modification
                                                                   and dispersion of  multi-walled carbon nanotubes[J]. Journal of
                                                                   Heilongjiang University of Science and Technology (黑龙江科技大

                  图 10  OP-10 在 MWCNTs 表面吸附示意图                     学学报), 2018, 28(3): 286-291.
            Fig. 10    Schematic representation of OP-10 adsorbing onto   [8]  XU P  (许鹏).  Study on surface treatment and  dispersion  of carbon
                   the MWCNTs surface                              nanotubes[D]. Guangzhou: South China University of Technology (华
                                                                   南理工大学), 2018.
                                                               [9]   MENG S H (孟胜皓), YAN J (闫军), WANG M Q (汪明球), et al.
                                                                   Surface  modifications  of carbon  nanotubes and their application to
            3   结论                                                 composite materials[J]. Chemical Industry and Engineering Progress
                                                                   (化工进展), 2014, 33(8): 2084-2088.
                (1)紫外-可见吸收光谱、Zeta 电位及 SEM 测                    [10]  ZHANG B Y  (张卜爻). Preparation of amphiphilic alginic acid
            试结果表明:4 种表面活性剂均辅助 MWCNTs 提高                            derivatives/multi-walled carbon  nanotubes  dispersion system and
                                                                   study on the emulsion[D]. Haikou: Hainan University (海南大学),
            了其分散性能,且皆在表面活性剂质量分数略高于                                 2020.
            CMC 时获得最佳分散效果;其中,CTAB、SDS、                         [11]  DATSYUK V, KALYVA M, PAPAGELIS K,  et al. Chemical
                                                                   oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6):
            HT A-103、OP-10 质量分数分别为 0.04%、0.30%、
                                                                   833-840.
            0.025%、0.06%时达到相应各表面活性剂-MWCNTs                     [12]  LI H L,  QIU Y  H. Dispersion sedimentation and aggregation  of
            分散体系的分散极限;4 种表面活性剂分散性能对比                               multi-walled carbon nanotubes as affected by single and binary
                                                                   mixed surfactants[J]. Royal Society Open Science, 2019, 6(7):
            结果为:CTAB>HT A-103>OP-10>SDS。                           190241.
                (2)CTAB 通过静电引力及范德华力、疏水作                        [13]  LIU Z J (刘宗建), ZHANG R Y (张仁元), MAO L B (毛凌波), et
                                                                   al. Research on the dispersion and optical properties of carbon
            用力在 MWCNTs 壁形成双层吸附包覆在 MWCNTs
                                                                   nanotubes[J]. Material Research and Application (材料研究与应用),
            表面;HT A-103 和 OP-10 通过疏水力、范德华力与                        2009, 3(4): 243-247.
            π-π 堆积作用在 MWCNTs 表面实现较好的吸附;SDS                     [14]  SUN Z, NICOLOSI V, RICKARD D, et al. Quantitative evaluation
                                                                   of surfactant-stabilized single-walled carbon nanotubes: Dispersionquality
            通过疏水作用力和范德华力包裹在 MWCNTs 表面;
                                                                   and its correlation with zeta potential[J]. Phys Chem C, 2008, 112(29):
            OP-10 依靠亲水 EO 长 链提供的空间位阻分散                             10692-10699.
            MWCNTs,其余 3 种表面活性剂则利用静电排斥作                         [15]  LUO J L (罗健林), DUAN Z D (段忠东). The dispersion effect of
                                                                   diversified surfactants on multi-walled carbon nanotube in aqueous
            用与空间位阻共同实现 MWCNTs 的有效分散。                               solution[J]. Fine Chemicals (精细化工), 2008, 25(8): 733-738.
                (3)CTAB 由于在 MWCNTs 上多层吸附形成胶                    [16]  MAO Y Q (毛贻琴). The dispersion and antibacterial properties of
                                                                   multi-walled carbon nanotubes in presence of ultrasound[D]. Guangzhou:
            束,凭借更强的静电排斥作用以及更出色的空间位
                                                                   Guangdong University of Technology (广东工业大学), 2020.
            阻,分散性能优于其余 3 种表面活性剂;CTAB 相                                                        (下转第 410 页)
   66   67   68   69   70   71   72   73   74   75   76