Page 71 - 《精细化工》2022年第2期
P. 71
第 2 期 陈泽宇,等: 表面活性剂分散多壁碳纳米管机理及性能评价 ·275·
2.4.3 OP-10 吸附与分散机理 比于 SDS 与 HT A-103,通过更高的表面电势、更长
OP-10 分子结构如下所示,包含了疏水烷基链、 的分子链以及在 MWCNTs 表面更强的吸附能力获
苯环和亲水 EO 长链(—OCH 2 CH 2 —)。 得了较好的分散效果。
参考文献:
[1] WANG S H ( 王少 辉 ). Chemical functionalization of carbon
nanotubes and the properties of their waterborne polyurethane
composites[D]. Taiyuan: Taiyuan University of Technology (太原理
工大学), 2019.
其中,辛烷基在疏水作用和范德华力作用下与 [2] ZHANG M M (张萌萌), JIA G Y (贾广跃), XIONG L P (熊丽萍), et
MWCNTs 相互吸引,苯环则通过 π-π 堆积作用垂直 al. Progress on thermal conductivity models of carbon nanotube
polymer composites[J]. Fine Chemicals (精细化工), 2020, 37(6):
吸附至 MWCNTs 表面上,二者共同作用下提高了吸
1081-1087, 1106.
附能力使得更多的 OP-10 分子牢固地包裹在 MWCNTs [3] GONG H J (宫厚健). Aggregation behaviors of differently structured
表面上,如图 10 所示,EO 链在液相中良好的空间 block polyethers and the dispersing ability of single-walled carbon
nanotubes[D]. Ji'nan: Shandong University (山东大学), 2011.
位阻作用克服 MWCNTs 之间的吸附团聚,保证了分 [4] ZHANG Y (张燕). Dispersion and assembly of single-walled carbon
散体系的稳定性。 nanotubes in surfactant association system[D]. Ji'nan: Shandong
University (山东大学), 2016.
[5] SUN X Y (孙晓妍), WANG H F (王换方), LI D P (李东鹏). Research
progress of the dispersion of carbon nanotubes[J]. Guangdong
Chemical Industry (广东化工), 2017, 44(14): 160-161.
[6] BU L X (卜路霞), LI J J (李京京), GAO L L (高琳琳), et al.
Dispersion of multi-walled carbon nanotubes in solution dispersion
of multi-walled carbon nanotubes in solution with surfactant SDBS
[J]. Plating and Finishing (电镀与精饰), 2019, 41(7): 10-13.
[7] YANG C X (杨春霞), ZHAO W B (赵文彬). Surface modification
and dispersion of multi-walled carbon nanotubes[J]. Journal of
Heilongjiang University of Science and Technology (黑龙江科技大
图 10 OP-10 在 MWCNTs 表面吸附示意图 学学报), 2018, 28(3): 286-291.
Fig. 10 Schematic representation of OP-10 adsorbing onto [8] XU P (许鹏). Study on surface treatment and dispersion of carbon
the MWCNTs surface nanotubes[D]. Guangzhou: South China University of Technology (华
南理工大学), 2018.
[9] MENG S H (孟胜皓), YAN J (闫军), WANG M Q (汪明球), et al.
Surface modifications of carbon nanotubes and their application to
3 结论 composite materials[J]. Chemical Industry and Engineering Progress
(化工进展), 2014, 33(8): 2084-2088.
(1)紫外-可见吸收光谱、Zeta 电位及 SEM 测 [10] ZHANG B Y (张卜爻). Preparation of amphiphilic alginic acid
试结果表明:4 种表面活性剂均辅助 MWCNTs 提高 derivatives/multi-walled carbon nanotubes dispersion system and
study on the emulsion[D]. Haikou: Hainan University (海南大学),
了其分散性能,且皆在表面活性剂质量分数略高于 2020.
CMC 时获得最佳分散效果;其中,CTAB、SDS、 [11] DATSYUK V, KALYVA M, PAPAGELIS K, et al. Chemical
oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6):
HT A-103、OP-10 质量分数分别为 0.04%、0.30%、
833-840.
0.025%、0.06%时达到相应各表面活性剂-MWCNTs [12] LI H L, QIU Y H. Dispersion sedimentation and aggregation of
分散体系的分散极限;4 种表面活性剂分散性能对比 multi-walled carbon nanotubes as affected by single and binary
mixed surfactants[J]. Royal Society Open Science, 2019, 6(7):
结果为:CTAB>HT A-103>OP-10>SDS。 190241.
(2)CTAB 通过静电引力及范德华力、疏水作 [13] LIU Z J (刘宗建), ZHANG R Y (张仁元), MAO L B (毛凌波), et
al. Research on the dispersion and optical properties of carbon
用力在 MWCNTs 壁形成双层吸附包覆在 MWCNTs
nanotubes[J]. Material Research and Application (材料研究与应用),
表面;HT A-103 和 OP-10 通过疏水力、范德华力与 2009, 3(4): 243-247.
π-π 堆积作用在 MWCNTs 表面实现较好的吸附;SDS [14] SUN Z, NICOLOSI V, RICKARD D, et al. Quantitative evaluation
of surfactant-stabilized single-walled carbon nanotubes: Dispersionquality
通过疏水作用力和范德华力包裹在 MWCNTs 表面;
and its correlation with zeta potential[J]. Phys Chem C, 2008, 112(29):
OP-10 依靠亲水 EO 长 链提供的空间位阻分散 10692-10699.
MWCNTs,其余 3 种表面活性剂则利用静电排斥作 [15] LUO J L (罗健林), DUAN Z D (段忠东). The dispersion effect of
diversified surfactants on multi-walled carbon nanotube in aqueous
用与空间位阻共同实现 MWCNTs 的有效分散。 solution[J]. Fine Chemicals (精细化工), 2008, 25(8): 733-738.
(3)CTAB 由于在 MWCNTs 上多层吸附形成胶 [16] MAO Y Q (毛贻琴). The dispersion and antibacterial properties of
multi-walled carbon nanotubes in presence of ultrasound[D]. Guangzhou:
束,凭借更强的静电排斥作用以及更出色的空间位
Guangdong University of Technology (广东工业大学), 2020.
阻,分散性能优于其余 3 种表面活性剂;CTAB 相 (下转第 410 页)