Page 110 - 《精细化工》2022年第3期
P. 110

·532·                             精细化工   FINE CHEMICALS                                 第 39 卷

                 visible-light degradation[J]. Catalysis Science &  Technology, 2020,   (MXenes)[J]. Applied Surface Science, 2016, 362: 406-417.
                 10: 1161-1170.                                [24]  PENG C, YANG X, LI Y, et al. Hybrids of two-dimensional Ti 3C 2
            [10]  WU Y Y, DONG  Y M, XIA X F,  et al. Facile synthesis of N-F   and TiO 2 exposing {001} facets toward enhanced photocatalytic
                 codoped and  molecularly imprinted  TiO 2 for enhancing   activity[J]. ACS Applied Materials & Interfaces, 2016, 8: 6051-6060.
                 photocatalytic degradation of target contaminants[J]. Applied Surface   [25]  AN X, WANG W, WANG J, et al. The synergetic effects of Ti 3C 2
                 Science, 2016, 364: 829-836.                      MXene  and Pt as co-catalysts for highly efficient photocatalytic
            [11]  LIU G, ZHAO  Y  N, SUN C  H,  et al. Synergistic effects of B/N   hydrogen evolution over g-C 3N 4[J]. Physical Chemistry  Chemical
                 doping on the visible-light photocatalytic activity of mesoporous   Physics, 2018, 20: 11405-11411.
                 TiO 2[J]. Angewandte Chemie International Edition, 2008, 47(24):   [26]  WANG J, ZHU W, ZHANG Y. An efficient two-step technique for
                 5265-5277.                                        nitrogen-doped titanium dioxide synthesizing: Visible-light-induced
            [12]  VARLEY  J  B,  JANOTTI A, VANDEWALLE C G. Mechanism  of   photodecomposition of methylene blue[J]. Journal  of Physical
                 visible-light photocatalysis in nitrogen-doped TiO 2[J]. Advanced   Chemistry, 2007, 111(2): 1010-1014.
                 Materials, 2011, 23: 2343-2347.               [27]  ZHAO L, CHEN X, WANG X, et al. One-step solvothermal synthesis
            [13]  PARK J T, KIM D J, KIM D H, et al. A facile graft polymerization   of a carbon@TiO 2 dyade structure effectively promoting visible-light
                 approach to N-doped TiO 2 heterostructures with enhanced visible-   photocatalysis[J]. Advanced Material, 2010, 22: 3317-3321.
                 light photocatalytic activity[J]. Materials Letters, 2017, 202: 1-10.   [28]  LU Z, ZENG L, SONG W, et al. In situ synthesis of C-TiO 2/g-C 3N 4
            [14]  NAGUIB M, GOGOTSI Y. Synthesis of two-dimensional materials   heterojunction  nanocomposite as highly visible light active
                 by selective extraction[J]. Accounts of Chemical Research, 2015, 48:   photocatalyst originated from effective interfacial charge transfer[J].
                 128-135.                                          Applied Catalysis B: Environmental, 2017, 202: 489-499.
            [15]  KAJITAMA S, SZABOVA L, SODEYAMA  K,  et al. Sodium-ion   [29]  LI H, HAO Y B, LU H Q, et al. A systematic study on visible-light
                 intercalation mechanism in MXene nanosheets[J]. ACS Nano, 2016,   N-doped TiO 2 photocatalyst obtained from ethylenediamine by sol-
                 10: 3334-3341.                                    gel method[J]. Applied Surface Science, 2015, 344: 112-118.
            [16]  HUANG H, SONG Y, LI N. One-step in-situ preparation of N-doped   [30]  LIU X F, XING Z P, ZHANG Y, et al. Fabrication of 3D flower-like
                 TiO 2@C derived from Ti 3C 2 MXene for enhanced visible- light   black  N-TiO 2−x@MoS 2 for  unprecedented-high visible-light-driven
                 driven photodegradation[J] Applied Catalysis B: Environmental, 2019,   photocatalytic performance[J]. Applied Catalysis B: Environmental,
                 251: 154-161.                                     2017, 201: 119-127.
            [17]  JIANG H, HU J, GAN C, et  al. Visible-light induced one-pot   [31]  QUYEN V T, HA L T, THANH D M, et al. Advanced synthesis of
                 hydrogenation and amidation of nitroaromatics with carboxylic acids   MXene-derived nanoflower-shaped TiO 2@Ti 3C 2 heterojunction to
                 over 2D MXene-derived Pt/N-TiO 2/Ti 3C 2[J]. Molecular Catalysis,   enhance photocatalytic degradation of Rhodamine B[J]. Environmental
                 2021, 504: 111490-111498.                         Technology & Innovation, 2021, 21: 101286-101298.
            [18]  LI Y J, DENG X D, TIAN J, et al. Ti 3C 2 MXene-derived Ti 3C 2/TiO 2   [32]  WEN X, NIU  C,  ZHANG L,  et al.  Photocatalytic degradation of
                 nanoflowers for noble-metal-free photocatalytic overall water splitting   ciprofloxacin by a novel  Z-scheme CeO 2-Ag/AgBr photocatalyst:
                 [J]. Applied Materials Today, 2018, 13: 217-227.   Influencing factors, possible degradation pathways, and mechanism
            [19]  YANG C, LIU Y, SUN X, et al. In-situ construction of hierarchical   insight[J]. Journal of Catalysis, 2018, 358: 141-154.
                 accordion-like TiO 2/Ti 3C 2 nanohybrid as anode material for lithium   [33]  ZHANG Q, WANG Y, ZHU X, et al. 1T and 2H mixed phase MoS 2
                                                                                   3+
                 and sodium ion batteries[J]. Electrochimica Acta, 2018, 271: 165-172.   nanobelts coupled with Ti  self-doped TiO 2 nanosheets for enhanced
            [20]  HAN X, KUANG  Q, JIN M, et al. Synthesis of titania nanosheets   photocatalytic degradation of RhB under visible light[J]. Applied
                 with a high percentage of exposed (001) facets and related   Surface Science, 2021, 556: 149768-149777.
                 photocatalytic properties[J]. Journal of American Chemical Society,   [34]  ZHAO H,  LIU X,  DONG Y,  et al.  A special synthesis of BiOCl
                 2009, 131: 3152-3153.                             photocatalyst for efficient pollutants removal: New insight into the
            [21]  HANA X, ANA L, HUA Y, et al. Ti 3C 2 MXene-derived carbon-doped   band structure regulation and molecular oxygen activation[J]. Applied
                 TiO 2 coupled with g-C 3N 4 as the visible light photocatalysts for   Catalysis B: Environmental, 2019, 256: 117872-117880.
                 photocatalytic H 2 generation[J]. Applied Catalysis B: Environmental,   [35]  GUO  Y,  ZENG Z, ZHU Y,  et al. Catalytic oxidation of aqueous
                 2020, 265: 118539-118548.                         organic contaminants by persulfate activated with sulfur-doped
            [22]  YUAN  Y J,  LI Z J, WU S T,  et al. Role of two-dimensional   hierarchically porous carbon derived from thiophene[J]. Applied
                 nanointerfaces in  enhancing the photocatalytic performance of   Catalysis B: Environmental, 2018, 220: 635-644.
                 2D-2D MoS 2/CdS photocatalysts for H 2 production[J]. Chemical   [36]  ZHAO H, LIU X, DONG Y,  et al. Fabrication of a  Z-scheme
                 Engineering Journal, 2018, 350: 335-343.          {001}/{110} face heterojunction in BiOCl to promote spatial charge
            [23]  HALIM J, COOK K M, NAGUIB  M,  et al. Xray photoelectron   separation[J]. ACS Applied Materials & Interfaces, 2020, 12: 31532-
                 spectroscopy of select  multi-layered transition metal carbides   31541.
   105   106   107   108   109   110   111   112   113   114   115