Page 175 - 《精细化工》2022年第3期
P. 175
第 3 期 兰大为,等: MnS 掺杂多孔碳复合材料的制备及电化学性能 ·597·
+
和 0.32 V 附近的两个还原峰是由于 Li 的嵌入。在 uniform Fe 1–xS nanostructures as a high rate anode for sodium ion
batteries[J]. Nano Energy, 2017, 37: 81-89.
对应的阳极扫描曲线中,氧化峰出现在 1.25 V 左右, [6] LI J B, LI J L, YAN D, et al. Design of pomegranate-like clusters
+
这与 Li 的脱出过程密切相关。从第二次循环开始, with NiS 2 nanoparticles anchored on nitrogen-doped porous carbon
for improved sodium ion storage performance[J]. Journal of Materials
循环伏安曲线几乎重叠,说明具有良好的循环性能。 Chemistry A, 2018, 6: 6595-6605.
[7] GAO X Y, ZHANG X J, JIANG J L, et al. Rod-like carbon-coated
其次,为研究该复合材料的动态行为,在频率 MnS derived from metal-organic frameworks as high-performance
anode material for sodium-ion batteries[J]. Materials Letters, 2018,
5
–2
1.0×10 ~1.0×10 Hz 范围内对其进行交流阻抗测试。 228: 42-45.
[8] LIU B L, LIU Z J, LI D, et al. Nanoscale alpha-MnS crystallites
从图 6d 可以看出,两条 Nyquist 曲线都是由高频区 grown on N-S co-doped rGO as a long-life and high-capacity anode
的一个半圆和低频区的一条直线组成。其中,高频 material of Li-ion batteries[J]. Applied Surface Science, 2017, 416:
858-867.
区半圆对应的 SEI 膜电阻和电荷转移电阻(R ct ),低 [9] YUAN T Z, JIANG Y Z, SUN W P, et al. Ever-increasing pseudo
capacitance in RGO-MnO-RGO sandwich nanostructures for
频区的直线对应的瓦堡阻抗(R s )。其中,MnS 和 ultrahigh-rate lithium storage[J]. Advance Functional Material, 2016,
MnS@C 复合材料的电荷转移电阻 R ct 分别为 419 和 26: 2198-2206.
[10] ZHANG N, LI X, HOU T Y, et al. MnS hollow microspheres
147 Ω,两个样品的 R s 分别为 5.50 和 1.96 Ω。MnS@C combined with carbon nanotubes for enhanced performance sodium-
ion battery anode[J]. Chinese Chemical Letters, 2020, 31: 1221-1225.
复合材料电极的 SEI 膜电阻和电荷转移电阻远低于 [11] YI X L, HE W, ZHANG X D, et al. Hollow mesoporous
MnS 电极 [26] 。同时,在低频区,MnS@C 复合材料 MnO/MnS/SiC/S-CN composites prepared from soda pulping black
liquor for lithium-ion batteries[J]. Journal of Alloys and Compounds,
电极的斜率比 MnS 电极的斜率更大 [27] 。上述结果与 2018, 735: 1306-1313.
[12] XU X J, JI S M, GU M Z, et al. In situ synthesis of MnS hollow
无定形多孔碳的存在有关,无定形多孔碳的存在阻 microspheres on reduced graphene oxide sheets as high-capacity and
long-life anodes for Li- and Na-ion batteries[J]. ACS Applied Materials
止了 MnS 纳米粒子的聚集,从而保证结构完整性, & Interfaces, 2015, 7: 20957-20964.
表明材料具有优异的循环稳定性。较大的比表面积 [13] ZHAO X Y, TAN W B, DANG Q L, et al. Enhanced biotic
contributions to the dechlorination of pentachlorophenol by humus
和丰富的微孔和介孔结构提供了更多的电极反应位 respiration from different compostable environments[J]. Chemical
Engineering Journal, 2019, 361: 1565-1575.
+
点,有效地缩短了 Li 的传输路径,赋予了 MnS@C [14] HUCULAK-MACZKA M, HOFFMANN K, HOFFMANN J, et al.
Evaluation of the possibilities of using humic acids obtained from
复合材料良好的储锂性能,显著提高了材料的电导率。 lignite in modern water treatment[J]. Desalination and Water
此外,经元素分析测定,所得到的分级多孔碳主要 Treatment, 2018, 134: 296-304.
[15] LI J P (李静萍), ZHENG L C (郑李纯), CHEN F (陈峰), et al. Study
含有质量分数为 76.14%碳原子,17.21%氧原子, on the adsorption property of the residue after humid acid extraction
2+
to Cu [J]. Chemistry Bulletin (化学通报), 2010, 73(8): 719-723.
6.57%的氮原子。氧原子和氮原子具有较强的电负性, [16] ZHENG L C (郑李纯), LI C (李超), XU L (许力), et al. Adsorption
+
Li 的吸附能力较强,有利于提高材料的储锂能力。 behavior of residue of lignitic coal after extracting humic acid for Cr
(Ⅵ) in sewage[J]. Materials Protection (材料保护), 2010, 43(9): 63-65.
[17] DENG S J, CHAO D L. Vertical graphene/Ti 2Nb 10O 29/hydrogen
3 结论 molybdenum bronze composite arrays for enhanced lithium ion
storage[J]. Energy Storage Mater, 2018, 12: 137-144.
[18] WANG D H, XIA X H, WANG Y D. Vertical-aligned Li 2S-graphene
利用褐煤提取腐植酸后的残渣为碳源,成功制 encapsulated within a carbon shell as a free-standing cathode for
lithium-sulfur batteries[J]. Chemistry-A European Journal, 2017, 23:
备了 MnS@C 复合材料。MnS@C 复合材料作为锂 11169-11174.
[19] LI Z, HU X W, SHI Z N. MOFs-derived metal oxides inlayed in
离子电池的负极材料与 MnS 相比,展现出高达 carbon nanofibers as anode materials for high-performance lithium-
830 mA·h/g 的放电比容量,具有良好循环稳定性和 ion batteries[J]. Applied Surface Science, 2020, 30: 147290.
[20] GAO X, WANG B Y, ZHANG Y, et al. Graphene-scroll-sheathed
优异的倍率性能。这些优异的电化学性能与特殊结 α-MnS coaxial nanocables embedded in N, S co-doped graphene
foam as 3D hierarchically ordered electrodes for enhanced lithium
构多孔碳的引入有关,分级多孔碳可以充分缓解 storage[J]. Energy Storage Materials, 2019, 16: 46-55.
[21] LIU B L, LIU Z J, LI D, et al. Nanoscale α-MnS crystallites grown
MnS 纳米粒子的体积膨胀,阻止其在循环过程中的 on N-S co-doped rGO as a long-life and high-capacity anode material
团聚,从而加速离子/电子转移,提高导电性和循环 of Li-ion batteries[J]. Applied Surface Science, 2017, 416: 858-867.
[22] SEUL Y L, SOO J P. Isothermal exfoliation of graphene oxide by a new
稳定性。本研究从低阶煤资源再利用的角度出发, carbon dioxide pressure swing method[J]. Carbon, 2014, 68: 112-117.
[23] LI B S, WANG R R, CHEN Z L, et al. Embedding heterostructured
为锂离子电池负极材料的制备提供了较好的思路。 MnS/Co 1–xS nanoparticles in porous carbon/graphene for superior
lithium storage[J]. Journal of Materials Chemistry A, 2019, 7: 1260-1266.
参考文献: [24] BAI D X, WANG F, LV J M, et al. Triple-confined well-dispersed
bioactive NiCo 2S 4/Ni 0.96S on graphene aerogel for high-efficiency
[1] JIANG M L (蒋茂林), YU W (余伟), ZHANG Z Y (张泽宇). lithium storage[J]. ACS Applied Materials Interfaces, 2016, 8:
Mechanical properties of Li-ion battery negative plates and factors 32853-32861.
influencing them[J]. Shanghai Metals (上海金属), 2019, 2: 43-48. [25] LIN J, CUI J L, CHENG F P, et al. Self-assembled porous
[2] ZHANG Z L, WANG Z L, LU X M, et al. Multishelled Si@Cu microsized composite of nano-Co 1–xS/biomass derived activated
microparticles supported on 3D Cu current collectors for stable and carbon by a facile solvothermal method as anode material of lithium
binder-free anodes of lithium-ion batteries[J]. ACS Nano, 2018, 12: ion battery[J]. Journal of Alloys and Compounds, 2017, 695: 2173-2179.
3587-3599. [26] GOU W W, KONG X Z, WANG Y P, et al. Yolk-shell structured
[3] LEWIS N S. Research opportunities to advance solar energy V 2O 3 microspheres wrapped in N, S co-doped carbon as pea-pod
utilization[J]. Science, 2016, 351: 6271. nanofibers for high-capacity lithium ion batteries[J]. Chemical
[4] WANG N N, ZHAI Y J, MA X J, et al. Rationally designed Engineering Journal, 2019, 374: 545-553.
hierarchical MnO 2@NiO nanostructures for improved lithium ion [27] ZHANG H B, LIU K, LIU Y Y, et al. Observably improving initial
storage[J]. Royal Society of Chemistry, 2015, 5: 61148-61154. coulombic efficiency of C/SiO x anode using -C-O-PO 3Li 2 groups in
[5] LI L L, PENG S J, CHEN H Y, et al. Large-scale synthesis of highly lithium ion batteries[J]. Journal of Power Sources, 2020, 447: 227400.