Page 175 - 《精细化工》2022年第3期
P. 175

第 3 期                    兰大为,等: MnS 掺杂多孔碳复合材料的制备及电化学性能                                   ·597·


                                               +
            和 0.32 V 附近的两个还原峰是由于 Li 的嵌入。在                          uniform Fe 1–xS nanostructures as a high rate anode for sodium ion
                                                                   batteries[J]. Nano Energy, 2017, 37: 81-89.
            对应的阳极扫描曲线中,氧化峰出现在 1.25 V 左右,                       [6]   LI J B, LI J L, YAN D, et al. Design of pomegranate-like clusters
                   +
            这与 Li 的脱出过程密切相关。从第二次循环开始,                              with NiS 2 nanoparticles anchored on nitrogen-doped porous carbon
                                                                   for improved sodium ion storage performance[J]. Journal of Materials
            循环伏安曲线几乎重叠,说明具有良好的循环性能。                                Chemistry A, 2018, 6: 6595-6605.
                                                               [7]   GAO X Y, ZHANG X J, JIANG J L, et al. Rod-like carbon-coated
            其次,为研究该复合材料的动态行为,在频率                                   MnS derived from  metal-organic frameworks as high-performance
                                                                   anode material for  sodium-ion batteries[J]. Materials  Letters, 2018,
                          5
                  –2
            1.0×10 ~1.0×10  Hz 范围内对其进行交流阻抗测试。                      228: 42-45.
                                                               [8]   LIU B L, LIU Z J, LI D,  et al. Nanoscale alpha-MnS  crystallites
            从图 6d 可以看出,两条 Nyquist 曲线都是由高频区                         grown on N-S co-doped rGO as a long-life and high-capacity anode
            的一个半圆和低频区的一条直线组成。其中,高频                                 material of Li-ion batteries[J]. Applied Surface Science, 2017, 416:
                                                                   858-867.
            区半圆对应的 SEI 膜电阻和电荷转移电阻(R ct ),低                     [9]   YUAN T Z, JIANG Y Z, SUN W P, et al. Ever-increasing pseudo
                                                                   capacitance in RGO-MnO-RGO sandwich nanostructures for
            频区的直线对应的瓦堡阻抗(R s )。其中,MnS 和                            ultrahigh-rate lithium storage[J]. Advance Functional Material, 2016,
            MnS@C 复合材料的电荷转移电阻 R ct 分别为 419 和                       26: 2198-2206.
                                                               [10]  ZHANG N, LI X, HOU  T  Y,  et al. MnS hollow microspheres
            147 Ω,两个样品的 R s 分别为 5.50 和 1.96 Ω。MnS@C                combined with carbon nanotubes for enhanced performance sodium-
                                                                   ion battery anode[J]. Chinese Chemical Letters, 2020, 31: 1221-1225.
            复合材料电极的 SEI 膜电阻和电荷转移电阻远低于                          [11]  YI X  L, HE  W, ZHANG X D,  et al. Hollow  mesoporous
            MnS 电极   [26] 。同时,在低频区,MnS@C 复合材料                      MnO/MnS/SiC/S-CN composites prepared from soda pulping black
                                                                   liquor for lithium-ion batteries[J]. Journal of Alloys and Compounds,
            电极的斜率比 MnS 电极的斜率更大              [27] 。上述结果与            2018, 735: 1306-1313.
                                                               [12]  XU X J, JI S M, GU M Z, et al. In situ synthesis of MnS hollow
            无定形多孔碳的存在有关,无定形多孔碳的存在阻                                 microspheres on reduced graphene oxide sheets as high-capacity and
                                                                   long-life anodes for Li- and Na-ion batteries[J]. ACS Applied Materials
            止了 MnS 纳米粒子的聚集,从而保证结构完整性,                              & Interfaces, 2015, 7: 20957-20964.
            表明材料具有优异的循环稳定性。较大的比表面积                             [13]  ZHAO  X Y,  TAN W B, DANG Q L,  et al. Enhanced biotic
                                                                   contributions  to the dechlorination of  pentachlorophenol  by humus
            和丰富的微孔和介孔结构提供了更多的电极反应位                                 respiration from different compostable environments[J]. Chemical
                                                                   Engineering Journal, 2019, 361: 1565-1575.
                               +
            点,有效地缩短了 Li 的传输路径,赋予了 MnS@C                        [14]  HUCULAK-MACZKA M, HOFFMANN K, HOFFMANN J, et al.
                                                                   Evaluation of the  possibilities  of  using humic acids obtained from
            复合材料良好的储锂性能,显著提高了材料的电导率。                               lignite in modern water treatment[J]. Desalination and Water
            此外,经元素分析测定,所得到的分级多孔碳主要                                 Treatment, 2018, 134: 296-304.
                                                               [15]  LI J P (李静萍), ZHENG L C (郑李纯), CHEN F (陈峰), et al. Study
            含有质量分数为 76.14%碳原子,17.21%氧原子,                           on the adsorption property of the residue after humid acid extraction
                                                                      2+
                                                                   to Cu [J]. Chemistry Bulletin (化学通报), 2010, 73(8): 719-723.
            6.57%的氮原子。氧原子和氮原子具有较强的电负性,                         [16]  ZHENG L C (郑李纯), LI C (李超), XU L (许力), et al. Adsorption
              +
            Li 的吸附能力较强,有利于提高材料的储锂能力。                               behavior of residue of lignitic coal after extracting humic acid for Cr
                                                                   (Ⅵ) in sewage[J]. Materials Protection (材料保护), 2010, 43(9): 63-65.
                                                               [17]  DENG S J,  CHAO D L.  Vertical graphene/Ti 2Nb 10O 29/hydrogen
            3   结论                                                 molybdenum bronze composite arrays for enhanced lithium ion
                                                                   storage[J]. Energy Storage Mater, 2018, 12: 137-144.
                                                               [18]  WANG D H, XIA X H, WANG Y D. Vertical-aligned Li 2S-graphene
                 利用褐煤提取腐植酸后的残渣为碳源,成功制                              encapsulated within a carbon  shell as a free-standing cathode for
                                                                   lithium-sulfur batteries[J]. Chemistry-A European Journal, 2017, 23:
            备了 MnS@C 复合材料。MnS@C 复合材料作为锂                            11169-11174.
                                                               [19]  LI Z, HU X W, SHI Z N.  MOFs-derived metal oxides inlayed in
            离子电池的负极材料与 MnS 相比,展现出高达                                carbon nanofibers as anode materials for high-performance lithium-
            830 mA·h/g 的放电比容量,具有良好循环稳定性和                           ion batteries[J]. Applied Surface Science, 2020, 30: 147290.
                                                               [20]  GAO X, WANG B Y, ZHANG Y, et  al. Graphene-scroll-sheathed
            优异的倍率性能。这些优异的电化学性能与特殊结                                 α-MnS coaxial nanocables embedded in N, S co-doped  graphene
                                                                   foam  as 3D hierarchically ordered electrodes for enhanced lithium
            构多孔碳的引入有关,分级多孔碳可以充分缓解                                  storage[J]. Energy Storage Materials, 2019, 16: 46-55.
                                                               [21]  LIU B L, LIU Z J, LI D, et al. Nanoscale α-MnS crystallites grown
            MnS 纳米粒子的体积膨胀,阻止其在循环过程中的                               on N-S co-doped rGO as a long-life and high-capacity anode material
            团聚,从而加速离子/电子转移,提高导电性和循环                                of Li-ion batteries[J]. Applied Surface Science, 2017, 416: 858-867.
                                                               [22]  SEUL Y L, SOO J P. Isothermal exfoliation of graphene oxide by a new
            稳定性。本研究从低阶煤资源再利用的角度出发,                                 carbon dioxide pressure swing method[J]. Carbon, 2014, 68: 112-117.
                                                               [23]  LI B S, WANG R R, CHEN Z L, et al. Embedding heterostructured
            为锂离子电池负极材料的制备提供了较好的思路。                                 MnS/Co 1–xS nanoparticles in  porous  carbon/graphene for superior
                                                                   lithium storage[J]. Journal of Materials Chemistry A, 2019, 7: 1260-1266.
            参考文献:                                              [24]  BAI D X, WANG F, LV J M, et al. Triple-confined well-dispersed
                                                                   bioactive NiCo 2S 4/Ni 0.96S on graphene aerogel for high-efficiency
            [1]   JIANG M  L (蒋茂林), YU W (余伟), ZHANG Z Y (张泽宇).    lithium storage[J]. ACS Applied Materials Interfaces, 2016, 8:
                 Mechanical properties of Li-ion battery negative plates and factors   32853-32861.
                 influencing them[J]. Shanghai Metals (上海金属), 2019, 2: 43-48.   [25]  LIN J,  CUI J L, CHENG F P,  et al. Self-assembled porous
            [2]   ZHANG  Z L, WANG Z L, LU X M,  et al. Multishelled Si@Cu   microsized composite of nano-Co 1–xS/biomass derived activated
                 microparticles supported on 3D Cu current collectors for stable and   carbon by a facile solvothermal method as anode material of lithium
                 binder-free anodes of lithium-ion batteries[J]. ACS Nano, 2018, 12:   ion battery[J]. Journal of Alloys and Compounds, 2017, 695: 2173-2179.
                 3587-3599.                                    [26]  GOU W W, KONG X Z, WANG Y  P,  et al. Yolk-shell structured
            [3]   LEWIS N S. Research opportunities to advance solar energy   V 2O 3  microspheres wrapped in N, S  co-doped carbon as pea-pod
                 utilization[J]. Science, 2016, 351: 6271.         nanofibers for high-capacity lithium ion batteries[J].  Chemical
            [4]   WANG N N,  ZHAI Y J, MA X J,  et al. Rationally designed   Engineering Journal, 2019, 374: 545-553.
                 hierarchical MnO 2@NiO nanostructures for improved lithium ion   [27]  ZHANG H B, LIU K, LIU Y Y, et al. Observably improving initial
                 storage[J]. Royal Society of Chemistry, 2015, 5: 61148-61154.   coulombic efficiency of C/SiO x anode using -C-O-PO 3Li 2 groups in
            [5]   LI L L, PENG S J, CHEN H Y, et al. Large-scale synthesis of highly   lithium ion batteries[J]. Journal of Power Sources, 2020, 447: 227400.
   170   171   172   173   174   175   176   177   178   179   180