Page 69 - 《精细化工》2022年第4期
P. 69
第 4 期 谢 璠,等: RGO/ANFs 复合气凝胶的制备及电磁屏蔽性能 ·705·
ternary cobalt hydroxide carbonate-nickel hydroxide-reduced foam composites for high-performance electromagnetic interference
graphene oxide composite porous nanowire arrays with superior shielding[J]. Advanced materials, 2013, 25(9):1296-1300.
faradic capacitance performance[J]. Journal of Colloid and Interface [34] ZENG Z, CHEN M, JIN H, et al. Thin and flexible multi-walled
Science, 2019, 534: 563-573. carbon nanotube/waterborne polyurethane composites with
[19] LUCIUS R, LOOS R, MAYR H. Kinetic studies of carbocation- high-performance electromagnetic interference shielding[J]. Carbon,
carbanion combinations: Key to a general concept of polar organic 2016, 96(14):768-777.
reactivity[J]. Angewandte Chemie, 2010, 41(1): 91-95. [35] JIA L C, YAN D X, LIU X F, et al. Highly efficient and reliable
[20] HE L, TONG S C. Aqueous graphene oxide-dispersed carbon transparent electromagnetic interference shielding film[J]. ACS
nanotubes as inks for the scalable production of all-carbon Applied Materials & Interfaces, 2018, 10(14):11941-11949.
transparent conductive films[J]. Journal of Materials Chemistry C, [36] LU Z, JIA F, ZHUO L, et al. Micro-porous MXene/aramid
2016, 4(29): 7043-7051. nanofibers hybrid aerogel with reversible compression and efficient
[21] AMELI A, JUNG U P, PARK B C. Electrical properties and EMI shielding performance[J]. Composites Part B: Engineering,
electromagnetic interference shielding effectiveness of polypropylene/ 2021, 217:108853-108864.
carbon fiber composite foams[J]. Carbon, 2013, 60(7): 379-391. [37] WAN C, LI J. Graphene oxide/cellulose aerogels nanocomposite:
[22] LYU T(吕通), ZHANG E S(张恩爽), YUAN Y(原因), et al. Preparation, pyrolysis, and application for electromagnetic interference
Preparation of large monolayer MXene with low defect and its shielding[J]. Carbohydrate Polymers, 2016, 150(16):172-179.
electromagnetic shielding properties[J]. Chinese Universities(高等学 [38] HAN S, WANG S, LI W, et al. Synthesis of PPy/Ni/RGO and
校化学学报), 2019, 40(10): 2059-2066. enhancement on its electromagnetic wave absorption performance[J].
[23] CHEN Z, XU C, MA C, et al. Lightweight and flexible graphene Ceramics International, 2018, 44(9):10352-10361.
foam composites for high-performance electromagnetic interference [39] SANG M, LIU G, LIU S, et al. Flexible PTFE/MXene/PI soft
shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300. electrothermal actuator with electromagnetic-interference shielding
[24] SONG W L, CAO M S, WEN B, et al. Synthesis of zinc oxide property[J]. Chemical Engineering Journal, 2021, 414(15): 128883-
particles coated multiwalled carbon nanotubes: Dielectric properties, 128896.
electromagnetic interference shielding and microwave absorption[J]. [40] KUANG T, CHANG L, CHEN F, et al. Facile preparation of
Materials Research Bulletin, 2012, 47(7): 1747-1754. lightweight high-strength biodegradable polymer/multi-walled
[25] HE P, WANG X X, CAI Y Z, et al. Tailoring Ti 3C 2T x nanosheets to carbon nanotubes nanocomposite foams for electromagnetic
tune local conductive network as an environmentally friendly interference shielding[J]. Carbon, 2016, 105(8):305-313.
material for highly efficient electromagnetic interference shielding [41] TAO L, LI H, DAI H X, et al. Facile synthesis of Ag-reduced
(ESI)[J]. Nanoscale, 2019, 11: 6080-6088. graphene oxide hybrids and their application in electromagnetic
[26] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and interference shielding[J]. Applied Physics A: Materials Science &
characterization of 2D molybdenum carbide (MXene)[J]. Advanced Processing, 2014, 116(1):25-32.
Functional Materials, 2016, 26(18): 3118-3127. [42] LING J, ZHAI W, FENG W, et al. Facile preparation of lightweight
[27] KIM T, BAE J Y, LEE N, et al. Metamaterials: Hierarchical microcellular polyetherimide/graphene composite foams for
metamaterials for multispectral camouflage of infrared and electromagnetic interference shielding[J]. ACS Applied Materials &
microwaves[J]. Advanced Functional Materials, 2019, 29(10): Interfaces, 2013, 5(7):2677-2684.
1970060-1970072. [43] SHEN B, LI Y, ZHAI W, et al. Compressible graphene-coated
[28] CAO W Q, WANG X X, YUAN J, et al. Temperature dependent polymer foams with ultralow density for adjustable electromagnetic
microwave absorption of ultrathin graphene composites[J]. Materials interference (EMI) shielding[J]. ACS Applied Materials & Interfaces
Chemistry C, 2015, 3: 10017-10022. 2016, 8(12):8050-8057.
[29] YANG H, CAO M, LI Y, et al. Silicon carbide: Enhanced dielectric [44] ZENG Z, JIN H, CHEN M, et al. Lightweight and anisotropic porous
properties and excellent microwave absorption of SiC powders MWCNT/WPU composites for ultrahigh performance
driven with NiO nanorings[J]. Advanced Optical Materials, 2014, electromagnetic interference shielding[J]. Advanced Functional
2(3): 213-219. Materials, 2016, 26(2):303-310.
[30] CHEN Y, PTSCHKE P, PIONTECK J, et al. Multifunctional [45] CUI C H, YAN D X, PANG H, et al. A high heat-resistance bioplastic
cellulose/RGO/Fe 3O 4 composite aerogels for electromagnetic foam with efficient electromagnetic interference shielding[J].
interference shielding[J]. ACS Applied Materials & Interfaces, 2020, Chemical Engineering Journal, 2017, 323(1):29-36.
12(19): 22088-22098. [46] ZENG Z, CHEN M, PEI Y, et al. Ultralight and flexible
[31] XI J, LI Y, ZHOU E, et al. Graphene aerogel films with expansion polyurethane/silver nanowire nanocomposites with unidirectional
enhancement effect of high-performance electromagnetic interference pores for highly effective electromagnetic shielding[J]. ACS Applied
shielding[J]. Carbon, 2018, 135: 41-51. Materials & Interfaces, 2017, 9(37):32211-32219.
[32] PAVLOU C, CARBONE M, MANIKAS A C, et al. Effective EMI [47] FEI Y, LIANG M, YAN L, et al. Co/C@cellulose nanofiber aerogel
shielding behaviour of thin graphene/PMMA nanolaminates in the derived from metal-organic frameworks for highly efficient
THz range[J]. Nature Communications, 2021, 12(1): 4655-4663. electromagnetic interference shielding[J]. Chemical Engineering
[33] CHEN Z, XU C, MA C, et al. Lightweight and flexible graphene Journal, 2020, 392(15):124815-124846.