Page 69 - 《精细化工》2022年第4期
P. 69

第 4 期                    谢   璠,等: RGO/ANFs 复合气凝胶的制备及电磁屏蔽性能                               ·705·


                 ternary cobalt hydroxide carbonate-nickel hydroxide-reduced   foam composites for high-performance electromagnetic interference
                 graphene oxide composite porous nanowire arrays with superior   shielding[J]. Advanced materials, 2013, 25(9):1296-1300.
                 faradic capacitance performance[J]. Journal of Colloid and Interface   [34]  ZENG Z, CHEN M,  JIN  H,  et al. Thin and flexible multi-walled
                 Science, 2019, 534: 563-573.                      carbon  nanotube/waterborne  polyurethane  composites  with
            [19]  LUCIUS R, LOOS R, MAYR H. Kinetic studies of carbocation-   high-performance electromagnetic interference shielding[J]. Carbon,
                 carbanion combinations: Key to a general concept of polar organic   2016, 96(14):768-777.
                 reactivity[J]. Angewandte Chemie, 2010, 41(1): 91-95.     [35]  JIA L  C, YAN D  X, LIU X F,  et al. Highly efficient and reliable
            [20]  HE L, TONG S  C. Aqueous graphene oxide-dispersed carbon   transparent electromagnetic interference shielding film[J]. ACS
                 nanotubes as inks for the scalable production  of all-carbon   Applied Materials & Interfaces, 2018, 10(14):11941-11949.
                 transparent conductive films[J]. Journal of Materials Chemistry C,   [36]  LU  Z, JIA F, ZHUO  L,  et al. Micro-porous  MXene/aramid
                 2016, 4(29): 7043-7051.                           nanofibers hybrid aerogel with reversible compression and efficient
            [21]  AMELI  A, JUNG U P, PARK B  C.  Electrical properties and   EMI shielding performance[J]. Composites  Part B: Engineering,
                 electromagnetic interference shielding effectiveness of polypropylene/   2021, 217:108853-108864.
                 carbon fiber composite foams[J]. Carbon, 2013, 60(7): 379-391.     [37]  WAN C,  LI J. Graphene oxide/cellulose aerogels nanocomposite:
            [22] LYU  T(吕通), ZHANG  E S(张恩爽), YUAN Y(原因),  et al.   Preparation, pyrolysis, and application for electromagnetic interference
                 Preparation of large  monolayer MXene with low defect and its   shielding[J]. Carbohydrate Polymers, 2016, 150(16):172-179.
                 electromagnetic shielding properties[J]. Chinese Universities(高等学  [38]  HAN S,  WANG S, LI  W,  et al. Synthesis of PPy/Ni/RGO and
                 校化学学报), 2019, 40(10): 2059-2066.                  enhancement on its electromagnetic wave absorption performance[J].
            [23]  CHEN Z, XU  C,  MA C,  et al.  Lightweight and flexible graphene   Ceramics International, 2018, 44(9):10352-10361.
                 foam composites for high-performance electromagnetic interference   [39]  SANG M, LIU G, LIU S,  et al. Flexible PTFE/MXene/PI soft
                 shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300.     electrothermal actuator with electromagnetic-interference shielding
            [24]  SONG  W L, CAO M S,  WEN B,  et al. Synthesis of zinc oxide   property[J]. Chemical Engineering Journal, 2021, 414(15): 128883-
                 particles coated multiwalled carbon nanotubes: Dielectric properties,   128896.
                 electromagnetic interference shielding and microwave absorption[J].   [40]  KUANG T, CHANG L, CHEN F,  et al. Facile preparation  of
                 Materials Research Bulletin, 2012, 47(7): 1747-1754.     lightweight high-strength biodegradable polymer/multi-walled
            [25]  HE P, WANG X X, CAI Y Z, et al. Tailoring Ti 3C 2T x nanosheets to   carbon nanotubes nanocomposite foams for electromagnetic
                 tune local conductive network as  an environmentally friendly   interference shielding[J]. Carbon, 2016, 105(8):305-313.
                 material for  highly efficient electromagnetic interference shielding   [41]  TAO  L,  LI H, DAI H X,  et al. Facile synthesis of  Ag-reduced
                 (ESI)[J]. Nanoscale, 2019, 11: 6080-6088.         graphene oxide hybrids and their application in electromagnetic
            [26]  HALIM J, KOTA  S, LUKATSKAYA M  R,  et al. Synthesis and   interference shielding[J]. Applied Physics A: Materials Science &
                 characterization of 2D molybdenum carbide (MXene)[J]. Advanced   Processing, 2014, 116(1):25-32.
                 Functional Materials, 2016, 26(18): 3118-3127.     [42]  LING J, ZHAI W, FENG W, et al. Facile preparation of lightweight
            [27]  KIM  T, BAE J  Y, LEE N,  et al. Metamaterials: Hierarchical   microcellular polyetherimide/graphene composite foams for
                 metamaterials for multispectral camouflage of infrared and   electromagnetic interference shielding[J]. ACS Applied Materials &
                 microwaves[J]. Advanced Functional Materials, 2019, 29(10):   Interfaces, 2013, 5(7):2677-2684.
                 1970060-1970072.                              [43]  SHEN B, LI  Y,  ZHAI W,  et al. Compressible graphene-coated
            [28]  CAO W  Q, WANG X  X, YUAN J,  et al. Temperature  dependent   polymer foams with ultralow density for adjustable electromagnetic
                 microwave absorption of ultrathin graphene composites[J]. Materials   interference (EMI) shielding[J]. ACS Applied Materials & Interfaces
                 Chemistry C, 2015, 3: 10017-10022.                2016, 8(12):8050-8057.
            [29]  YANG H, CAO M, LI Y, et al. Silicon carbide: Enhanced dielectric   [44]  ZENG Z, JIN H, CHEN M, et al. Lightweight and anisotropic porous
                 properties and excellent microwave  absorption  of  SiC powders   MWCNT/WPU  composites  for  ultrahigh  performance
                 driven with NiO nanorings[J]. Advanced Optical Materials, 2014,   electromagnetic interference shielding[J]. Advanced Functional
                 2(3): 213-219.                                    Materials, 2016, 26(2):303-310.
            [30]  CHEN Y, PTSCHKE P, PIONTECK J,  et al. Multifunctional   [45]  CUI C H, YAN D X, PANG H, et al. A high heat-resistance bioplastic
                 cellulose/RGO/Fe 3O 4 composite aerogels for electromagnetic   foam with efficient electromagnetic interference shielding[J].
                 interference shielding[J]. ACS Applied Materials & Interfaces, 2020,   Chemical Engineering Journal, 2017, 323(1):29-36.
                 12(19): 22088-22098.                          [46]  ZENG Z, CHEN M, PEI Y,  et al. Ultralight and flexible
            [31]  XI J, LI Y, ZHOU E, et al. Graphene aerogel films with expansion   polyurethane/silver nanowire nanocomposites with unidirectional
                 enhancement  effect  of high-performance electromagnetic interference   pores for highly effective electromagnetic shielding[J]. ACS Applied
                 shielding[J]. Carbon, 2018, 135: 41-51.           Materials & Interfaces, 2017, 9(37):32211-32219.
            [32]  PAVLOU C, CARBONE M, MANIKAS A C, et al. Effective EMI   [47]  FEI Y, LIANG M, YAN L, et al. Co/C@cellulose nanofiber aerogel
                 shielding behaviour of thin  graphene/PMMA nanolaminates in the   derived from metal-organic frameworks  for highly efficient
                 THz range[J]. Nature Communications, 2021, 12(1): 4655-4663.   electromagnetic interference shielding[J]. Chemical Engineering
            [33]  CHEN Z, XU  C,  MA C,  et al.  Lightweight and flexible graphene   Journal, 2020, 392(15):124815-124846.
   64   65   66   67   68   69   70   71   72   73   74