Page 68 - 《精细化工》2022年第4期
P. 68
·704· 精细化工 FINE CHEMICALS 第 39 卷
3
度仅为 0.0112 g/cm 。为制备兼具力学性能与电磁屏
蔽性能的超轻复合材料提供了一种简单可行的思路。
参考文献:
[1] ZHANG Y, HUANG Y, ZHANG T, et al. Broadband and tunable
high performance microwave absorption of an ultralight and highly
compressible graphene foam[J]. Advanced Materials, 2015, 27(12):
2049-2053.
[2] CHEN Z P, XU C, MA C Q, et al. Lightweight and flexible graphene
foam composites for high-performance electromagnetic interference
shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300.
[3] YOUSEFI N, SUN X, LIN X, et al. Highly aligned graphene/
polymer nanocomposites with excellent dielectric properties for high
performance electromagnetic interference shielding[J]. Advanced
Materials, 2014, 26(31): 5480-5487.
[4] FREY A H. Headaches from cellular telephones: Are they real and
what are the implications[J]. Environmental Health Perspectives,
1998, 106(3): 101-107.
[5] ZHANG H B, YAN Q, ZHENG W G, et al. Tough graphene-polymer
microcellular foams for electromagnetic interference shielding[J].
ACS Applied Materials & Interfaces, 2011, 3(3): 918-924.
[6] ZENG Z, JIN H, CHEN M, et al. Microstructure design of
lightweight, flexible, and high electromagnetic shielding porous
multiwalled carbon nanotube/polymer composites[J]. Small, 2017, 9:
1388-1398.
[7] YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: A
new nanoscale building block[J]. ACS Nano, 2011, 5: 6945-6954.
[8] MOHANTY A K, GHOSH A, SAWAI P, et al. Electromagnetic
interference shielding effectiveness of MWCNT filled poly(ether
sulfone) and poly(ether imide) nanocomposites[J]. Polymer
Engineering and Science, 2014, 54(11): 2560-2570.
[9] YIN Y, LIU X, WEI X, et al. Porous CNT/Co composite derived
from zeolitic imidazolate framework: A lightweight, ultrathin, and
highly efficient electromagnetic wave absorber[J]. ACS Appl Mater
Interfaces, 2016, 8(50): 34686-34698.
[10] XIE F, JIA F F, ZHUO L H. Ultrathin MXene/aramid nanofiber
图 8 RGO/ANFs 复合气凝胶与部分复合材料的机械强 composite paper with excellent mechanical properties for efficient
度与电磁屏蔽损耗(a)、密度与电磁屏蔽损耗(b)的 electromagnetic interference shielding[J]. Nanoscale, 2019, 11:
23382-23391.
关系及 RGO/ANFs 复合气凝胶的电磁屏蔽机理(c)
Fig. 8 Relationships between mechanical strength and [11] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic
propertiesand intrinsic strength of monolayer grapheme[J]. Science,
electromagnetic shielding loss (a) and density and 2008, 321(5887): 385-388.
electromagnetic shielding loss (b) of RGO/ANFs [12] WAN Y J, ZHU P L, YU S H, et al. Ultralight, super-elastic and
composite aerogels and other composites, as well
as electromagnetic shielding mechanism of volume-preserving cellulose fiber/graphene aerogel for high-
RGO/ANFs composite aerogel (c) performance electromagnetic interference shielding[J]. Carbon, 2017,
115: 629-639.
[13] BURIAK J M, TORO C. Layer-by-layer growth of graphene
3 结论 oxide-based films for electronics applications in 1999: Early
leaders[J]. Chemistry of Materials, 2015, 27(1): 1-2.
[14] SHEN B, LI Y, ZHAI W, et al. Compressible graphene-coated
通过化学水热还原法得到了 RGO,采用去质子
polymer foams with ultralow density for adjustable electromagnetic
化法制备了 ANFs,并以具有较高力学性能的 ANFs interference (EMI) shielding[J]. ACS Applied Materials & Interfaces,
为基体,引入电学性能较强的 RGO,通过冷冻干燥 2016, 8(12): 8050-8057.
[15] YANG B, WANG L, ZHANG M Y. High-efficiency approaches to
法成功地制备了一种具有较高电磁屏蔽性能、较高 fabricate aramid nanofibers (ANFs)[J]. ACS Nano, 2019, 13(7):
压缩应力的超轻 RGO/ANFs 复合气凝胶。研究表明, 7886-7897.
[16] ZHU Y, STOLLER M D, CAI W, et al. Exfoliation of graphite oxide
随着 RGO 添加量的增加,复合气凝胶电导率与电磁
in propylene carbonate and thermal reduction of the resulting
屏蔽性能显著增强。当 RGO 添加量为 25%时,复 graphene oxide platelets[J]. ACS Nano, 2010, 4(2): 1227-1236.
合气凝胶电导率高达 23.62 S/cm,在 X 波段(8.2~ [17] PATEL A, LOUFAKIS D, FLOUDA P, et al. Carbon nanotube/
reduced graphene oxide/aramid nanofiber structural supercapacitors[J].
12.4 GHz)总电磁屏蔽损耗达到 25.70 dB,复合气 ACS Applied Energy Materials, 2020, 3(12): 11763-11771.
凝胶压缩应变为 0.7 时,压缩应力可达 100 kPa 且密 [18] GAO Z, WANG Z, CHANG J, et al. Micelles directed preparation of