Page 68 - 《精细化工》2022年第4期
P. 68

·704·                             精细化工   FINE CHEMICALS                                 第 39 卷

                                                                                3
                                                               度仅为 0.0112 g/cm 。为制备兼具力学性能与电磁屏
                                                               蔽性能的超轻复合材料提供了一种简单可行的思路。

                                                               参考文献:
                                                               [1]   ZHANG Y,  HUANG Y,  ZHANG  T,  et al. Broadband and tunable
                                                                   high performance microwave absorption of an ultralight and highly
                                                                   compressible graphene foam[J]. Advanced Materials, 2015, 27(12):
                                                                   2049-2053.
                                                               [2]   CHEN Z P, XU C, MA C Q, et al. Lightweight and flexible graphene
                                                                   foam composites for high-performance electromagnetic interference
                                                                   shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300.
                                                               [3]   YOUSEFI N, SUN X, LIN X,  et al. Highly aligned graphene/
                                                                   polymer nanocomposites with excellent dielectric properties for high
                                                                   performance  electromagnetic interference shielding[J].  Advanced
                                                                   Materials, 2014, 26(31): 5480-5487.
                                                               [4]   FREY A H. Headaches from cellular telephones: Are they real and
                                                                   what are the implications[J]. Environmental Health Perspectives,
                                                                   1998, 106(3): 101-107.
                                                               [5]   ZHANG H B, YAN Q, ZHENG W G, et al. Tough graphene-polymer
                                                                   microcellular foams for electromagnetic interference shielding[J].
                                                                   ACS Applied Materials & Interfaces, 2011, 3(3): 918-924.
                                                               [6]   ZENG  Z, JIN H, CHEN M,  et al. Microstructure design  of
                                                                   lightweight, flexible,  and high electromagnetic shielding porous
                                                                   multiwalled carbon nanotube/polymer composites[J]. Small, 2017, 9:
                                                                   1388-1398.
                                                               [7]    YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: A
                                                                   new nanoscale building block[J]. ACS Nano, 2011, 5: 6945-6954.
                                                               [8]   MOHANTY  A K, GHOSH A, SAWAI P,  et al. Electromagnetic
                                                                   interference shielding effectiveness  of MWCNT filled poly(ether
                                                                   sulfone) and poly(ether imide) nanocomposites[J]. Polymer
                                                                   Engineering and Science, 2014, 54(11): 2560-2570.
                                                               [9]   YIN Y, LIU  X,  WEI X,  et al. Porous CNT/Co composite derived
                                                                   from zeolitic imidazolate framework: A lightweight, ultrathin, and
                                                                   highly efficient electromagnetic wave absorber[J]. ACS Appl Mater
                                                                   Interfaces, 2016, 8(50): 34686-34698.

                                                               [10]  XIE F, JIA F  F,  ZHUO  L H. Ultrathin MXene/aramid nanofiber
            图 8  RGO/ANFs 复合气凝胶与部分复合材料的机械强                         composite paper with excellent mechanical properties for efficient
                  度与电磁屏蔽损耗(a)、密度与电磁屏蔽损耗(b)的                        electromagnetic interference shielding[J]. Nanoscale, 2019, 11:
                                                                   23382-23391.
                  关系及 RGO/ANFs 复合气凝胶的电磁屏蔽机理(c)
            Fig. 8    Relationships between mechanical strength and   [11]  LEE  C, WEI X, KYSAR  J W,  et al. Measurement of the elastic
                                                                   propertiesand intrinsic strength of monolayer grapheme[J]. Science,
                    electromagnetic shielding loss (a) and density and   2008, 321(5887): 385-388.
                    electromagnetic shielding loss (b) of RGO/ANFs   [12]  WAN  Y J, ZHU P L, YU S H,  et al. Ultralight, super-elastic and
                    composite aerogels and other composites, as well
                    as electromagnetic shielding  mechanism of     volume-preserving cellulose fiber/graphene aerogel  for  high-
                    RGO/ANFs composite aerogel (c)                 performance electromagnetic interference shielding[J]. Carbon, 2017,
                                                                   115: 629-639.
                                                               [13]  BURIAK J M, TORO C.  Layer-by-layer growth of  graphene
            3   结论                                                 oxide-based films  for  electronics applications in 1999:  Early
                                                                   leaders[J]. Chemistry of Materials, 2015, 27(1): 1-2.
                                                               [14]  SHEN B, LI  Y,  ZHAI W,  et al. Compressible graphene-coated
                 通过化学水热还原法得到了 RGO,采用去质子
                                                                   polymer foams with ultralow density for adjustable electromagnetic
            化法制备了 ANFs,并以具有较高力学性能的 ANFs                            interference (EMI) shielding[J]. ACS Applied Materials & Interfaces,
            为基体,引入电学性能较强的 RGO,通过冷冻干燥                               2016, 8(12): 8050-8057.
                                                               [15]  YANG  B, WANG  L, ZHANG M Y.  High-efficiency approaches to
            法成功地制备了一种具有较高电磁屏蔽性能、较高                                 fabricate aramid nanofibers (ANFs)[J].  ACS Nano, 2019, 13(7):
            压缩应力的超轻 RGO/ANFs 复合气凝胶。研究表明,                           7886-7897.
                                                               [16]  ZHU Y, STOLLER M D, CAI W, et al. Exfoliation of graphite oxide
            随着 RGO 添加量的增加,复合气凝胶电导率与电磁
                                                                   in propylene carbonate and thermal reduction of the resulting
            屏蔽性能显著增强。当 RGO 添加量为 25%时,复                             graphene oxide platelets[J]. ACS Nano, 2010, 4(2): 1227-1236.
            合气凝胶电导率高达 23.62 S/cm,在 X 波段(8.2~                   [17]  PATEL A,  LOUFAKIS D, FLOUDA P,  et al. Carbon nanotube/
                                                                   reduced graphene oxide/aramid nanofiber structural supercapacitors[J].
            12.4 GHz)总电磁屏蔽损耗达到 25.70 dB,复合气                        ACS Applied Energy Materials, 2020, 3(12): 11763-11771.
            凝胶压缩应变为 0.7 时,压缩应力可达 100 kPa 且密                    [18]  GAO Z, WANG Z, CHANG J, et al. Micelles directed preparation of
   63   64   65   66   67   68   69   70   71   72   73