Page 124 - 《精细化工》2022年第5期
P. 124
·978· 精细化工 FINE CHEMICALS 第 39 卷
3 结论 Chemical Engineering Journal, 2020, 399: 125778.
[14] MA F, DAI X Q, JIN J, et al. Hierarchical core-shell hollow
CoMoS 4@Ni-Co-S nanotubes hybrid arrays as advanced electrode
以 CC 为基底,在不添加黏合剂的条件下,成 material for supercapacitors[J]. Electrochimica Acta, 2020, 331:
135459.
功在 CC 的表面自生长出中空纳米管状 Al-NiCo 2 S 4
[15] MENG T, KOU Z K, AMIINU I S, et al. Electronic structure control
复合材料。研究结果表明,CC@Al-NiCo 2S 4 具有高比 of tungsten oxide activated by Ni for ultrahigh-performance
电容(在 1 A/g 的电流密度下为 1515.8 F/g)、高倍 supercapacitors[J]. Small, 2018, 14(20): e1800381.
[16] JIANG J, LI Z P, HE X R, et al. Novel skutterudite CoP 3-based
率性能(当电流密度增加至 10 A/g 时保持有 1184.2 asymmetric supercapacitor with super high energy density[J]. Small,
F/g)和优异的循环稳定性(在 6 A/g 的电流密度下 2020, 16(31): e2000180.
[17] HE W J, WANG F Q, JIA D B, et al. Al-doped nickel sulfide
充放电测试 10000 次,电容保持率高达 87.8%)。另 nanosheet arrays as highly efficient bifunctional electrocatalysts for
外,以 CC@Al-NiCo 2 S 4 作为正极、AC 作为负极的 overall water splitting[J]. Nanoscale, 2020, 12(47): 24244-24250.
[18] WANG Z, CHANG J L, CHEN L M, et al. Al doped Co hydroxyl
CC@Al-NiCo 2 S 4 //AC ASC 在 1 A/g 下具有 78.3 F/g fluoride nanosheets arrays as efficient faradaic electrode for hybrid
的比电容,当功率密度为 750 W/kg 时,能量密度为 supercapacitor[J]. Electrochimica Acta, 2019, 323: 134815.
[19] WANG M, ZHANG W J, ZHANG F F, et al. Theoretical expectation
24.46 W·h/kg,在经过 10000 次循环测试后,电容保 and experimental implementation of in situ Al-doped CoS 2 nanowires
持率高达 98.1%,证实 CC@Al-NiCo 2 S 4 的电化学性 on dealloying-derived nanoporous intermetallic substrate as an
efficient electrocatalyst for boosting hydrogen production[J]. ACS
能优异,有望被应用于超级电容器中。 Catalysis, 2019, 9(2): 1489-1502.
[20] TIAN H, WANG X D, LI H Y, et al. Superhydrophilic Al-doped NiP 2
参考文献: nanosheets as efficient electrocatalysts for hydrogen evolution
reaction[J]. Energy Technology, 2019, 8(1): 1900936.
[1] LI Y M, HAN X, YI T F, et al. Review and prospect of [21] CAKICI M, REGHAVA R K, ALONSO-MARROQUIN F. Advanced
NiCo 2O 4-based composite materials for supercapacitor electrodes[J]. electrochemical energy storage supercapacitors based on the flexible
Journal of Energy Chemistry, 2019, 31: 54-78. carbon fiber fabric-coated with uniform coral-like MnO 2 structured
[2] MA J (马婧), WANG F P (王芳平), ZHOU K L (周凯玲), et al. electrodes[J]. Chemical Engineering Journal, 2017, 309: 151-158.
Preparation of sandwich-type biochar electrode materials and [22] YAN M L, YAO Y D, WEN J Q, et al. Construction of a hierarchical
performance of supercapacitor[J]. Fine Chemicals (精细化工), 2021, NiCo 2S 4@PPy core-shell heterostructure nanotube array on Ni foam
38(2): 374-379. for a high-performance asymmetric supercapacitor[J]. ACS Applied
[3] ZHAO N, FAN H Q, MA J W, et al. Entire synergistic contribution of Materials Interfaces, 2016, 8(37): 24525-24535.
electrodeposited battery-type NiCo 2O 4@Ni 4.5Co 4.5S 8 composite for [23] LI G F, CUI X, SONG B, et al. One-pot synthesis of Cu-doped Ni 3S 2
high-performance supercapacitors[J]. Journal of Power Sources, nano-sheet/rod nanoarray for high performance supercapacitors[J].
2019, 439: 227097. Chemical Engineering Journal, 2020, 388: 124319.
[4] ZHENG X H (郑贤宏), HU Q L (胡侨乐), NIE W Q (聂文琪), et al. [24] LI Q H, LU W, LI Z P, et al. Hierarchical MoS 2/NiCo 2S 4@C
Advances in flexible fiber-shaped supercapacitors[J]. Fine Chemicals urchin-like hollow microspheres for asymmetric supercapacitors[J].
(精细化工), 2021, 38(12): 2393-2403. Chemical Engineering Journal, 2020, 380: 122544.
[5] LI X L, HUANG J J, WANG L, et al. Hierarchical honeycomb-like [25] GAO X R, LIU X M, WU D J, et al. Significant role of Al in ternary
networks of CuCo-P@Ni(OH) 2 nanosheet arrays enabling layered double hydroxides for enhancing electrochemical performance
high-performance hybrid supercapacitors[J]. Journal of Alloys and of flexible asymmetric supercapacitor[J]. Advanced Functional
Compounds, 2020, 838: 155626. Materials, 2019, 29(36): 1903879.
[6] HAO Z B, HE X C, LI H D, et al. Vertically aligned and ordered [26] SHEN L F, WANG J, XU G Y, et al. NiCo 2S 4 nanosheets grown on
arrays of 2D MCo 2S 4@metal with ultrafast ion/electron transport for nitrogen-doped carbon foams as an advanced electrode for
thickness-independent pseudocapacitive energy storage[J]. ACS supercapacitors[J]. Advanced Energy Materials, 2015, 5(3): 1400977.
Nano, 2020, 14(10): 12719-12731. [27] FU J J, LI L, YUN J M, et al. Two-dimensional titanium carbide
[7] LI Y K, ZHANG Z C, CHEN Y, et al. Facile synthesis of a Ni-based (MXene)-wrapped sisal-like NiCo 2S 4 as positive electrode for
NiCo 2O 4-PANI composite for ultrahigh specific capacitance[J]. high-performance hybrid pouch-type asymmetric supercapacitor[J].
Applied Surface Science, 2020, 506: 144646. Chemical Engineering Journal, 2019, 375: 121939.
[8] YANG A L (杨安乐), QIN T T (覃甜甜), FENG X L (冯学磊), et al. [28] YU F, CHANG Z, YUAN X H, et al. Ultrathin NiCo 2S 4@graphene
Preparation of rGO/NiCo 2S 4 and high-performance asymmetric with a core-shell structure as a high performance positive electrode
supercapacitors using GO/ZIF-67 template[J]. Chinese Journal of for hybrid supercapacitors[J]. Journal of Materials Chemistry A,
Inorganic Chemistry (无机化学学报), 2020, 36(10): 1822-1830. 2018, 6(14): 5856-5861.
[9] YI T F, PAN J J, WEI T T, et al. NiCo 2S 4-based nanocomposites for [29] CAI P F, LIU T, ZHANG L Y, et al. ZIF-67 derived nickel cobalt
energy storage in supercapacitors and batteries[J]. Nano Today, 2020, sulfide hollow cages for high-performance supercapacitors[J]. Applied
33: 100894. Surface Science, 2020, 504: 144501.
[10] WEN Y Q (温雅琼), HUANG Y J (黄钰洁), XING B Y (邢宝岩), et [30] GUAN B Y, YU L, WANG X, et al. Formation of onion-like NiCo 2S 4
al. Preparation of flower-like NiCo 2S 4 nanomaterial for supercapacitors particles via sequential ion-exchange for hybrid supercapacitors[J].
and study on its electrochemical performance[J]. Modern Chemical Advanced Materials, 2017, 29: 1605051.
Industry (现代化工), 2020, 40(6): 103-106, 113. [31] SHEN L F, YU L, WU H B, et al. Formation of nickel cobalt sulfide
[11] LI B X, TIAN Z, LI H J, et al. Self-supporting graphene aerogel ball-in-ball hollow spheres with enhanced electrochemical
electrode intensified by NiCo 2S 4 nanoparticles for asymmetric pseudocapacitive properties[J]. Nature Communications, 2015, 6:
supercapacitor[J]. Electrochimica Acta, 2019, 314: 32-39. 6694.
[12] YAN Y, LI A R, LU C X, et al. Double-layered yolk-shell [32] ZHANG X J, HOU S J, DING Z B, et al. Carbon wrapped CoP
microspheres with NiCo 2S 4-Ni 9S 8-C hetero-interfaces as advanced hollow spheres for high performance hybrid supercapacitor[J].
battery-type electrode for hybrid supercapacitors[J]. Chemical Journal of Alloys and Compounds, 2020, 822: 153578.
Engineering Journal, 2020, 396: 125316. [33] GU J L, SUN L, ZHANG Y X, et al. MOF-derived Ni-doped
[13] WAN L, HE C Y, CHEN D Q, et al. In situ grown NiFeP@NiCo 2S 4 CoP@C grown on CNTs for high-performance supercapacitors[J].
nanosheet arrays on carbon cloth for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2020, 385: 123454.