Page 124 - 《精细化工》2022年第5期
P. 124

·978·                             精细化工   FINE CHEMICALS                                 第 39 卷

            3   结论                                                 Chemical Engineering Journal, 2020, 399: 125778.
                                                               [14]  MA F, DAI X Q, JIN J,  et al. Hierarchical  core-shell hollow
                                                                   CoMoS 4@Ni-Co-S nanotubes  hybrid  arrays as advanced electrode
                 以 CC 为基底,在不添加黏合剂的条件下,成                            material for supercapacitors[J]. Electrochimica  Acta, 2020, 331:
                                                                   135459.
            功在 CC 的表面自生长出中空纳米管状 Al-NiCo 2 S 4
                                                               [15]  MENG T, KOU Z K, AMIINU I S, et al. Electronic structure control
            复合材料。研究结果表明,CC@Al-NiCo 2S 4 具有高比                       of tungsten oxide activated by Ni for ultrahigh-performance
            电容(在 1 A/g 的电流密度下为 1515.8 F/g)、高倍                      supercapacitors[J]. Small, 2018, 14(20): e1800381.
                                                               [16]  JIANG J, LI Z P,  HE X  R,  et al. Novel skutterudite CoP 3-based
            率性能(当电流密度增加至 10 A/g 时保持有 1184.2                        asymmetric supercapacitor with super high energy density[J]. Small,
            F/g)和优异的循环稳定性(在 6 A/g 的电流密度下                           2020, 16(31): e2000180.
                                                               [17]  HE W J, WANG  F Q, JIA D B,  et al. Al-doped  nickel sulfide
            充放电测试 10000 次,电容保持率高达 87.8%)。另                         nanosheet arrays as highly efficient bifunctional electrocatalysts for
            外,以 CC@Al-NiCo 2 S 4 作为正极、AC 作为负极的                     overall water splitting[J]. Nanoscale, 2020, 12(47): 24244-24250.
                                                               [18]  WANG Z, CHANG J L, CHEN L M, et al. Al doped Co hydroxyl
            CC@Al-NiCo 2 S 4 //AC ASC 在 1 A/g 下具有 78.3 F/g         fluoride nanosheets arrays as efficient faradaic electrode for hybrid
            的比电容,当功率密度为 750 W/kg 时,能量密度为                           supercapacitor[J]. Electrochimica Acta, 2019, 323: 134815.
                                                               [19]  WANG M, ZHANG W J, ZHANG F F, et al. Theoretical expectation
            24.46 W·h/kg,在经过 10000 次循环测试后,电容保                      and experimental implementation of in situ Al-doped CoS 2 nanowires
            持率高达 98.1%,证实 CC@Al-NiCo 2 S 4 的电化学性                   on  dealloying-derived nanoporous intermetallic substrate as an
                                                                   efficient electrocatalyst for boosting hydrogen production[J]. ACS
            能优异,有望被应用于超级电容器中。                                      Catalysis, 2019, 9(2): 1489-1502.
                                                               [20]  TIAN H, WANG X D, LI H Y, et al. Superhydrophilic Al-doped NiP 2
            参考文献:                                                  nanosheets as efficient electrocatalysts for hydrogen evolution
                                                                   reaction[J]. Energy Technology, 2019, 8(1): 1900936.
            [1]   LI Y M,  HAN  X, YI T F,  et al. Review and prospect of   [21]  CAKICI M, REGHAVA R K, ALONSO-MARROQUIN F. Advanced
                 NiCo 2O 4-based composite materials for supercapacitor electrodes[J].   electrochemical energy storage supercapacitors based on the flexible
                 Journal of Energy Chemistry, 2019, 31: 54-78.     carbon fiber fabric-coated with uniform  coral-like MnO 2 structured
            [2]   MA J (马婧), WANG F P (王芳平), ZHOU K L (周凯玲),  et al.   electrodes[J]. Chemical Engineering Journal, 2017, 309: 151-158.
                 Preparation of sandwich-type biochar electrode materials and   [22]  YAN M L, YAO Y D, WEN J Q, et al. Construction of a hierarchical
                 performance of supercapacitor[J]. Fine Chemicals (精细化工), 2021,   NiCo 2S 4@PPy core-shell heterostructure nanotube array on Ni foam
                 38(2): 374-379.                                   for a high-performance asymmetric supercapacitor[J]. ACS Applied
            [3]   ZHAO N, FAN H Q, MA J W, et al. Entire synergistic contribution of   Materials Interfaces, 2016, 8(37): 24525-24535.
                 electrodeposited battery-type NiCo 2O 4@Ni 4.5Co 4.5S 8 composite for   [23]  LI G F, CUI X, SONG B, et al. One-pot synthesis of Cu-doped Ni 3S 2
                 high-performance  supercapacitors[J].  Journal of Power  Sources,   nano-sheet/rod nanoarray for high performance supercapacitors[J].
                 2019, 439: 227097.                                Chemical Engineering Journal, 2020, 388: 124319.
            [4]   ZHENG X H (郑贤宏), HU Q L (胡侨乐), NIE W Q (聂文琪), et al.   [24]  LI Q H, LU W,  LI Z P,  et al. Hierarchical MoS 2/NiCo 2S 4@C
                 Advances in flexible fiber-shaped supercapacitors[J]. Fine Chemicals   urchin-like hollow microspheres for asymmetric supercapacitors[J].
                 (精细化工), 2021, 38(12): 2393-2403.                  Chemical Engineering Journal, 2020, 380: 122544.
            [5]   LI X L, HUANG J J, WANG L, et al. Hierarchical honeycomb-like   [25]  GAO X R, LIU X M, WU D J, et al. Significant role of Al in ternary
                 networks of CuCo-P@Ni(OH) 2 nanosheet arrays enabling   layered double hydroxides for enhancing electrochemical performance
                 high-performance hybrid  supercapacitors[J]. Journal of  Alloys and   of flexible asymmetric supercapacitor[J]. Advanced Functional
                 Compounds, 2020, 838: 155626.                     Materials, 2019, 29(36): 1903879.
            [6]   HAO  Z B, HE X  C, LI  H D, et al. Vertically  aligned and ordered   [26]  SHEN L F, WANG J, XU G Y, et al. NiCo 2S 4 nanosheets grown on
                 arrays of 2D MCo 2S 4@metal with ultrafast ion/electron transport for   nitrogen-doped carbon foams  as  an advanced  electrode for
                 thickness-independent pseudocapacitive energy storage[J]. ACS   supercapacitors[J]. Advanced Energy Materials, 2015, 5(3): 1400977.
                 Nano, 2020, 14(10): 12719-12731.              [27]  FU J J, LI L, YUN J M,  et al. Two-dimensional titanium carbide
            [7]   LI Y K, ZHANG Z C, CHEN Y, et al. Facile synthesis of a Ni-based   (MXene)-wrapped sisal-like NiCo 2S 4 as positive electrode for
                 NiCo 2O 4-PANI composite for ultrahigh specific capacitance[J].   high-performance hybrid pouch-type asymmetric supercapacitor[J].
                 Applied Surface Science, 2020, 506: 144646.       Chemical Engineering Journal, 2019, 375: 121939.
            [8]   YANG A L (杨安乐), QIN T T (覃甜甜), FENG X L (冯学磊), et al.   [28]  YU F, CHANG Z, YUAN X H, et al. Ultrathin NiCo 2S 4@graphene
                 Preparation of  rGO/NiCo 2S 4 and  high-performance asymmetric   with a core-shell structure as a high performance positive electrode
                 supercapacitors using GO/ZIF-67  template[J]. Chinese Journal of   for  hybrid supercapacitors[J]. Journal of Materials Chemistry A,
                 Inorganic Chemistry (无机化学学报), 2020, 36(10): 1822-1830.     2018, 6(14): 5856-5861.
            [9]   YI T F, PAN J J, WEI T T, et al. NiCo 2S 4-based nanocomposites for   [29]  CAI P F, LIU T, ZHANG  L Y, et al. ZIF-67 derived nickel cobalt
                 energy storage in supercapacitors and batteries[J]. Nano Today, 2020,   sulfide hollow cages for high-performance supercapacitors[J]. Applied
                 33: 100894.                                       Surface Science, 2020, 504: 144501.
            [10]  WEN Y Q (温雅琼), HUANG Y J (黄钰洁), XING B Y (邢宝岩), et   [30]  GUAN B Y, YU L, WANG X, et al. Formation of onion-like NiCo 2S 4
                 al. Preparation of flower-like NiCo 2S 4 nanomaterial for supercapacitors   particles  via  sequential ion-exchange for hybrid supercapacitors[J].
                 and study on its electrochemical performance[J]. Modern Chemical   Advanced Materials, 2017, 29: 1605051.
                 Industry (现代化工), 2020, 40(6): 103-106, 113.     [31]  SHEN L F, YU L, WU H B, et al. Formation of nickel cobalt sulfide
            [11]  LI B X,  TIAN Z,  LI H J,  et al. Self-supporting  graphene aerogel   ball-in-ball hollow spheres with enhanced electrochemical
                 electrode intensified by NiCo 2S 4  nanoparticles for asymmetric   pseudocapacitive properties[J]. Nature Communications, 2015, 6:
                 supercapacitor[J]. Electrochimica Acta, 2019, 314: 32-39.     6694.
            [12]  YAN Y,  LI A  R, LU C X,  et al. Double-layered yolk-shell   [32]  ZHANG X J, HOU S J, DING Z  B,  et al. Carbon wrapped CoP
                 microspheres with  NiCo 2S 4-Ni 9S 8-C hetero-interfaces as  advanced   hollow spheres for high performance hybrid supercapacitor[J].
                 battery-type electrode for hybrid supercapacitors[J]. Chemical   Journal of Alloys and Compounds, 2020, 822: 153578.
                 Engineering Journal, 2020, 396: 125316.       [33]  GU J L, SUN L, ZHANG Y X,  et al. MOF-derived Ni-doped
            [13]  WAN L, HE C Y, CHEN D Q, et al. In situ grown NiFeP@NiCo 2S 4   CoP@C grown  on CNTs for high-performance supercapacitors[J].
                 nanosheet arrays on carbon cloth for asymmetric supercapacitors[J].   Chemical Engineering Journal, 2020, 385: 123454.
   119   120   121   122   123   124   125   126   127   128   129