Page 58 - 《精细化工》2022年第6期
P. 58
·1124· 精细化工 FINE CHEMICALS 第 39 卷
到疏水处理后气凝胶复合相变材料的表面,水滴可 孔结构紧凑,而且导热系数较低〔0.0487 W/(m·K)〕,
以长时间保持其圆形形状,其接触角约为 140.2°。 具备良好的隔热性能。
PDMS 是一种以硅氧键为骨架的高分子有机硅化合 (2)DCMC 作为生物大分子交联剂有效改善了
物,由于其主链十分柔顺,分子间的作用力弱,所 胶原气凝胶的力学性能。当 DCMC 用量小于 15%时,
以表面张力小,表面能低,具有很好的疏水性 [27] 。 改性胶原气凝胶的压缩应力随 DCMC 用量的增加
经 PDMS 处理后,DCMC 改性胶原气凝胶复合相变 而变大,然而当 DCMC 含量大于 15%后,改性胶原
材料表面构筑了一层低表面能涂层,使其由亲水性 气凝胶的压缩应力显著变小。
变为疏水性。 (3)通过真空浸渍法填充相变材料和浸涂法疏
本研究使用泥土作为污垢,将泥土撒在 DCMC 水处理制备出 DCMC 改性胶原气凝胶复合相变材
改性胶原气凝胶复合相变材料的表面,以约 30°的 料,具有储能调温特性,可进一步减缓热量扩散,
角度放置载玻片,然后用水冲刷表面污垢,结果如 提高其隔热性能。通过 PDMS 疏水处理可提高
图 12 所示。 DCMC 改性胶原气凝胶复合相变材料的防泄漏能
力,还赋予其优良的防污性能。
参考文献:
[1] WU X D (吴晓栋), CUI S (崔升), WANG L (王岭), et al. Advance
in research of high temperature resistant aerogel used as insulation
material[J]. Materials Review (材料导报), 2015, 29(5): 102-108.
[2] ZHANG C (张驰), KAN A K (阚安康), MENG C (孟闯), et al.
Research status of insulative aerogel composite material[J]. Chinese
图 12 未疏水处理(a)和疏水处理(b)的 DCMC 改性 Journal of Refrigeration Technology (制冷技术), 2016, 36(4): 61-67.
胶原气凝胶复合相变材料的防污性能测试照片 [3] SI Y, WANG X Q, DOU L Y, et al. Ultralight and fire-resistant ceramic
Fig. 12 Anti-fouling performance test pictures of DCMC modified nanofibrous aerogels with temperature-invariant superelasticity[J].
collagen aerogel composite phase change material Science Advances, 2018, 4(4): 1322-1326.
before (a) and after (b) hydrophobic treatment [4] YAN T T (闫婷婷), ZHENG X J (郑学晶), LlU J (刘捷), et al.
Advances in study of self-assembling collagen[J]. Polymer Bulletin
(高分子通报), 2016, (8): 18-28.
由图 12 可见,未疏水处理的 DCMC 改性胶原 [5] ZHAO H H (赵航航), ZHANG J L (张继林), Ll C (李琛). Research
气凝胶复合相变材料上的部分污垢被水冲开后污染 progress on resource utilization of leather wastes[J]. West Leather
(西部皮革), 2015, 37(16): 34-37.
了样品表面,且 DCMC 改性胶原气凝胶复合相变材
[6] WANG R R (王瑞瑞), WANG H R (王鸿儒). Research progress on
料的表面发生了塌陷,表明未疏水处理的 DCMC 改 preparation of functional materials from waste collagen[J]. West
性胶原气凝胶复合相变材料的耐水性差,不具备防 Leather (西部皮革), 2017, 39(23): 57-60.
[7] TAN Q (谈强), LIAO D X (廖达秀), WAN Y A (万义安), et al.
污能力。而疏水处理后的 DCMC 改性胶原气凝胶复 Research on comprehensive utilization technology and new progress
合相变材料表面上的污垢被水迅速冲刷掉,水滴很 of solid waste in leather making[J]. Leather Manufacture and
容易从表面滚落并带走污染物,DCMC 改性胶原气 Environmental Technology (皮革制作与环保科技), 2020, 1(6): 37-39.
[8] JIANG H, ZHENG M, LIU X, et al. Feasibility study of tissue
凝胶复合相变材料保持完好。这表明,通过 PDMS transglutaminase for self-catalytic cross-linking of self-assembled
疏水处理可以有效地改善 DCMC 改性胶原气凝胶 collagen fibril hydrogel and its promising application in wound
healing promotion[J]. ACS Omega, 2019, 4(7): 12606-12615.
复合相变材料耐水性差的缺陷,增强在潮湿环境下 [9] DHARUNYA G, DURAIPANDY N, LAKRA R, et al. Curcumin
的形状稳定性,使其长时间在潮湿的户外依旧拥有 cross-linked collagen aerogels with controlled anti-proteolytic and
良好的使用寿命 [28] 。这种疏水处理的 DCMC 改性胶 pro-angiogenic efficacy[J]. Biomedical Materials, 2016, 11(4): 045011.
[10] ZHU H, YU C H, WANG B, et al. Sponge-inspired reassembly of 3D
原气凝胶复合相变材料的实际应用领域将会更加广 hydrolyzed collagen aerogel with polyphenol-functionalization for
泛,为节能和环保行业的发展创造更多的价值。 ultra-capturing iodine from airborne effluents[J]. Chemical Engineering
Journal, 2022, 428: 131322.
3 结论 [11] LU T H, LI Q, CHEN W S, et al. Composite aerogels based on
dialdehyde nanocellulose and collagen for potential applications as
wound dressing and tissue engineering scaffold[J]. Compos Sci
(1)以制革固体废弃物中提取的胶原为原料, Technol, 2014, 94: 132-138.
通过冷冻干燥法制备了 DCMC 改性胶原气凝胶。 [12] JIANG X L, YANG Z, PENG Y F, et al. Preparation, characterization
and feasibility study of dialdehyde carboxymethyl cellulose as a novel
DCMC 用量对改性胶原气凝胶的密度、孔隙率和形 crosslinking reagent[J]. Carbohydrate Polymers, 2016, 137: 632-641.
貌有较大影响。引入 DCMC 后可以形成席夫碱交联 [13] TAN H, WU B, LI C P, et al. Collagen cryogel cross-linked by naturally
网络,制备出的 DCMC 改性胶原气凝胶不仅密度小 derived dialdehyde carboxymethyl cellulose[J]. Carbohydrate Polymers,
2015, 129: 17-24.
3
(9.21~10.38 mg/cm )、孔隙率高(94.99%~97.05%)、 (下转第 1133 页)