Page 45 - 《精细化工》2022年第8期
P. 45

第 8 期                   王   黎,等:  微生物电合成捕获 CO 2 及高效催化转化研究进展                             ·1545·


                 growth throughout unmodified carbon felts allows continuous   Technology & Biotechnology, 2016, 91(4): 921-927.
                 bioelectrochemical chain elongation from CO 2 up to caproate at high   [57]  ROJAS M P A, MATEOS  R, SOTRES  A,  et al. Microbial
                 current density[J]. Frontiers in Energy Research, 2018, 6: 7-22.     electrosynthesis (MES) from CO 2  is resilient to fluctuations in
            [41]  TIAN S H, HE J, HUANG H F,  et al.  Perovskite-based   renewable energy supply[J]. Energy Conversion and Management,
                 multifunctional cathode with simultaneous supplementation of   2018, 177: 272-279.
                 substrates and electrons for enhanced  microbial electrosynthesis of   [58]  LI Y J, WANG M  M, CHEN  Y W,  et al. Engineered yeast with a
                 organics[J].  ACS Applied Materials  & Interfaces, 2020, 12(27):   CO 2-fixation  pathway to improve the bio-ethanol production  from
                 30449-30456.                                      xylose-mixed sugars[J]. Scientific Reports, 2017, 7(1): 43875.
            [42]  BLASCOGOMEZ R, RAMIOPUJOL P S, BANERAS L,  et al.   [59]  CHEN C S, HANDOKO A D, WAN J H, et al. Stable and selective
                 Unravelling the factors that influence the bio-electrorecycling of   electrochemical reduction of carbon dioxide to ethylene on copper
                 carbon  dioxide towards biofuels[J]. Green Chemistry, 2019, 21(3):   mesocrystals[J]. Catalysis Science & Technology, 2015, 5(1): 161-
                 684-691.                                          168.
            [43]  ARENDS J B  A, PATIL S A, ROUME  H,  et al. Continuous   [60]  SHARMA M, ARYL N, SARMA P,  et al. Bioelectrocatalyzed
                 long-term electricity-driven bioproduction of carboxylates and   reduction of acetic and butyric acids via direct electron transfer using
                 isopropanol from CO 2 with a mixed microbial community[J]. Journal   a  mixed culture  of sulfate-reducers drives electrosynthesis  of
                 of CO 2 Utilization, 2017, 20: 141-149.           alcohols and acetone[J]. Chemical Communication, 2013, 49(58):
            [44]  SRIKANTH S, SINGH  D,  VANBROEKHVEN K,  et al. Electro-   6495-6497.
                 biocatalytic conversion of carbon dioxide to alcohols using gas   [61]  MOHAN S V, MODESTRA J A, AMULYA K,  et al.  A circular
                 diffusion electrode[J]. Bioresource Technology, 2018, 265: 45-51.     bioeconomy with biobased procucts from CO 2  sequestration[J].
            [45]  CHENG  C, LI W  M, LIN  M,  et al. Metabolic engineering of   Trends in Biotechnology, 2016, 34(6): 506-519.
                 Clostridium carboxidivorans for enhanced ethanol and butanol   [62]  RAES S M T, JOURDIN L,  BUISMAN C J N,  et al. Continuous
                 production from syngas and glucose[J]. Bioresource  Technology,   long-term bioelectrochemical chain elongation to  butyrate[J].
                 2019, 284: 415-423.                               Chemelectrochem, 2017, 4(2): 386-395.
            [46]  MA  C, MU Q X,  WANG L,  et al. Bio-production  of high-purity   [63]  JOURDIN L, WINKELHORS M,  RAWLS B,  et al. Enhanced
                 propionate by engineering L-threonine degradation  pathway in   selectivity to butyrate  and caproate above acetate in  continuous
                 Pseudomonas putida[J]. Applied Microbiology and Biotechnology,   bioelectrochemical  chain elongation from  CO 2: Steering  with CO 2
                 2020, 104(12): 5303-5313.                         loading rate and hydraulic retention time[J]. Bioresource Technology
            [47]  GANIGUE R, PUIG S,  BATLLEV P,  et al.  Microbial   Reports, 2019, 7: 100284.
                 electrosynthesis of butyrate from carbon  dioxide[J]. Chemical   [64]  DAS S, CHATTERJEE P, GHANGREKAR M M. Increasing
                 Communications, 2015, 51(15): 3235-3238.          methane content in biogas and simultaneous value added product
            [48]  VILANOVA P B, GANIGUE R, PUJOL S R,  et al. Microbial   recovery using microbial electrosynthesis[J]. Water Science and
                 electrosynthesis of butyrate from carbon dioxide: Production and   Technology, 2018, 77(5/6): 1293-1302.
                 extraction[J]. Bioelectrochemistry, 2017, 117: 57-64.     [65]  SRIKANTH S, KUMAR M, SINGH D, et al. Long-term operation of
            [49]  CHEN X  L, CAO  Y  X, LI F,  et al. Enzyme-assisted, microbial   electro-biocatalytic reactor for carbon dioxide transformation into
                 electrosynthesis of poly(3-hydroxybutyrate) via CO 2 bioreduction by   organic molecules[J]. Bioresource Technology, 2018, 265: 66-74.
                 engineered  Ralstonia eutropha[J]. ACS Catalysis, 2018, 8(5):   [66]  FLORES A D, CHOI H G, MARTINE R, et al. Catabolic division of
                 4429-4437.                                        labor enhances production of D-lactate and succinate from glucose-
            [50]  VASSILEV I, HERNANDEZ P  A,  BATLLEV P,  et al. Microbial   xylose mixtures in engineered escherichia coli co-culture systems[J].
                 electrosynthesis of isobutyric, butyric, caproic acids, and   Frontiers in Bioengineering and Biotechnology, 2020, 8: 329.
                 corresponding alcohols from carbon dioxide[J]. ACS Sustainable   [67]  NGUYEN D T N, LEE  O K, HADIYATI S,  et al. Metabolic
                 Chemistry & Engineering, 2018, 6(7): 8485-8493.     engineering of the type  Ⅰ methanotroph Methylomonas sp. DH-1
            [51]  VASSILEV I, KRACKE F, FREGUIA S,  et al. Microbial   for production of succinate from methane[J]. Metabolic Engineering,
                 electrosynthesis system with dual  biocathode arrangement for   2019, 54: 170-179.
                 simultaneous acetogenesis, solventogenesis  and carbon chain   [68]  LIU W Z, HUANG S H, ZHOU A J, et al. Hydrogen generation in
                 elongation[J]. Chemical Communications, 2019, 55(30): 4351-4354.     microbial electrolysis cell feeding with fermentation liquid of waste
            [52]  WU Z Q, WANG  J S, LIU J,  et al.  Engineering an electroactive   activated sludge[J]. International Journal of Hydrogen Energy, 2012,
                 Escherichia coli for the microbial electrosynthesis of succinate from   37(18): 13859-13864.
                 glucose and CO 2[J]. BioMed Central, 2019, 18(1): 132-142.     [69]  VAN E J, HEIJNE A T, GROOTSCHOLTEN T I  M,  et al.
            [53]  LEE  S Y, OH Y K,  LEE  S,  et al.  Recent developments and key   Bioelectrochemical production of caproate and caprylate from acetate
                 barriers  to microbial CO 2  electrobiorefinery[J]. Bioresource   by mixed cultures[J]. ACS Sustain Chem Eng, 2013, 1(5): 513-518.
                 Technology, 2021, 320: 124350.                [70]  SOUSSAN L, RIESS J, ERABLE B, et al. Electrochemical reduction
            [54]  TEO W S, LING H,  YU  A Q,  et al. Metabolic engineering  of   of CO 2 catalysed by Geobacter sulfurreducens grown on polarized
                 Saccharomyces cerevisiae for production  of fatty acid short- and   stainless steel cathodes[J]. Electrochemistry Communications, 2013,
                 branched-chain alkyl esters biodiesel[J]. Biotechnology for Biofuels,   28: 27-30.
                 2015, 8(1): 146-156.                          [71]  PHILIPS J. Extracellular electron uptake by acetogenic bacteria:
            [55]  LABELLE E  V,  MAY H D. Energy  efficiency and productivity   Does H 2 consumption favor the H 2 evolution reaction on a cathode or
                 enhancement of microbial electrosynthesis of acetate[J]. Frontiers in   metallic iron?[J]. Frontiers in Microbiology, 2019, 10: 2997.
                 Microbiology, 2017, 8: 756.                   [72]  ZHANG S X, JIANG J W, WANG H N, et al. A review of microbial
            [56]  BATLLEVILANOVA P, PUIG S, GONZALEZOLMOS  R,  et al.   electrosynthesis applied to carbon  dioxide capture and conversion:
                 Continuous acetate production through microbial electrosynthesis   The basic principles, electrode materials, and bioproducts[J]. Journal
                 from CO 2  with microbial mixed culture[J]. Journal of  Chemical   of CO 2 Utilization, 2021, 51: 2212-9820.
   40   41   42   43   44   45   46   47   48   49   50